PROTEIN-PROTEIN INTERACTION PREDICTION USING A DEEP NEURAL NETWORK WITH BATCH NORMALIZATION AND QUARTILE ALGORITHM
- Assistant Professor, Department of Computer Science, Esatic, Cote Divoire.
- Assistant Professor, Department of Computer Science, Esatic, Cote Divoire.
- Assistant Professor, Department of Computer Science, Una, Cote Divoire.
- Professor, Department of Computer Science, Esatic, Cote dIvoire.
- Abstract
- Keywords
- Cite This Article as
- Corresponding Author
Detecting protein-protein interactions (PPIs) is key for disease therapy development. While experimental methods are costly, deep neural network (DNN) models now use available PPI data for prediction, though limited by low-quality sequence-based data. This study introduces FDPPI, a DNN model leveraging a quartile-based algorithm and batch normalization to enhance performance, achieving 98.09% accuracy, 98.34% precision, and 97.72% sensitivity on human PPI data.
[N. Diffon Charlemagne Kopoin, Alex Armand Josue Akohoule, Wielfrid Morie and Olivier Pascal Asseu (2024); PROTEIN-PROTEIN INTERACTION PREDICTION USING A DEEP NEURAL NETWORK WITH BATCH NORMALIZATION AND QUARTILE ALGORITHM Int. J. of Adv. Res. (Dec). 750-760] (ISSN 2320-5407). www.journalijar.com
Ecole Supérieure Africaine des Technologies de l'Information et de la Communication
Cote d