03May 2020

AN ASSESSMENT OF THE INTERACTION BETWEEN INSECT BRAIN PROTEIN AND NON-STRUCTURAL PROTEIN OF CORONAVIRUS USING IN-SILICO ANALYSES

  • Department of Biotechnology, Mithibai College, Vile parle (w), Mumbai-400056.
  • Department of Bioinformatics, Patkar-Varde, Goregaon (w), Mumbai-400104.
  • Abstract
  • Keywords
  • References
  • Cite This Article as
  • Corresponding Author

Corona is an avian and mammalian Ribovirus which generally evade host immune mechanism hampering respiratory tract of the host. Structurally it has an envelope of protein enclosing a single-stranded positively coiled RNA genome. Coronavirus uses around 4-5 different classes of protein for its replication in the host cell. Due to the high mutation rate of the viral genome development of a vaccine against corona has been a difficult task. In the current scenario, the world is facing a problem with CoViD-19 as the biggest pandemic. Several combinations of drugs like Hydroxychloroquine, Plaquine, Chloroquine, etc. targeting viral protein have been utilized for controlling viral infection. The possibility of insect brain proteins was checked against the selected non-structural proteins of CoViD-19 that take an active role in the replication of the virus in the host. Molecular docking methodology plays an important role in predicting interaction between the insect proteins with non-structural protein (nsp) of coronavirus. The results predict good bonding affinity with possible interaction as hydrogen bond and salt bridge between antibacterial protein and nsp of CoViD-19 indicating as afuture alternative medications.


  1. Aartjan J. W. teVelthuis, Sjoerd H. E. van den Worm, Amy C. Sims, Ralph S. Baric, Eric J. Snijder?, Martijn J. van Hemert (2010),? Zn2+?Inhibits Coronavirus and Arterivirus RNA Polymerase Activity?In Vitro?and Zinc Ionophores Block the Replication of These Viruses in Cell Culture, PLOS Pathogens 6(11): e1001176
  2. Anand K., Ziebuhr J., Wadhwani P., Mesters J.R., Hilgenfeld R (2003). Coronavirus main proteinase (3CLpro) structure: basis for design of anti-SARS drugs.?Science.?;300:1763?1767.
  3. Bachar,O., Fischer,D., Nussinov,R. and Wolfson,H.J. (1993) A computer vision based technique for 3D sequence-independent structural comparison of proteins. Protein Eng., 6, 279?288.
  4. Chen,R., Li,L. and Weng,Z. (2003) ZDOCK: an initial-stage protein-docking algorithm. Proteins: Struct. Func. Bioinf., 52, 80?87
  5. Comeau,S.R., Gatchell,D.W., Vajda,S. and Camacho,C.J. (2004) ClusPro: a fully automated algorithm for protein-protein docking. Nucleic Acids Res., 32, W96?W99.
  6. de Groot, R. J., Baker, S. C., Baric, R. S., Brown, C. S., Drosten, C., Enjuanes, L., Fouchier, R. A., Galiano, M., Gorbalenya, A. E., Memish, Z. A., Perlman, S., Poon, L. L., Snijder, E. J., Stephens, G. M., Woo, P. C., Zaki, A. M., Zambon, M., &Ziebuhr, J. (2013). Middle East respiratory syndrome coronavirus (MERS-CoV): announcement of the Coronavirus Study Group.?Journal of virology,?87(14), 7790?7792.
  7. Fehr, A. R., & Perlman, S. (2015). Coronaviruses: an overview of their replication and pathogenesis.?Methods in molecular biology (Clifton, N.J.),?1282, 1?23.
  8. Gaoqi W., Ercheng W., Zhe W., Hui L., Feng Z., Dan L. and Tingjun H., Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China and 2State Key Lab of CAD&CG, Zhejiang University, Hangzhou, Zhejiang 310058, China,(2019). HawkDock: a web server to predict and analyze the protein?protein complex based on computational docking and MM/GBSA W322?W330 Nucleic Acids Research, Vol. 47
  9. Gorbalenya, A.E., Baker, S.C., Baric, R.S., (2020).?The species?Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2.?Nat Microbiol5,?536?544
  10. Hsu J.T., Kuo C.J., Hsieh H.P., Wang Y.C., Huang K.K., Lin C.P., Huang P.F., Chen X., Liang P.H. (2004) Evaluation of metal-conjugated compounds as inhibitors of 3CL protease of SARS-CoV.?FEBS Lett.?;574:116?120
  11. https://swissmodel.expasy.org/repository/species/2697049, last updated, December 2019
  12. https://www.uniprot.org/uniprot/P0C6X0 , last modified December 2019.
  13. Katchalski-Katzir,E., Shariv,I., Eisenstein,M., Friesem,A.A., Aflalo,C. and Vakser,I.A. (1992) Molecular surface recognition: determination of geometric fit between proteins and their ligands by correlation techniques. Proc. Natl Acad. Sci. USA, 89, 2195?2199
  14. Kuo C.J., Liu H.G., Lo Y.K., Seong C.M., Lee K.I., Jung Y.S., Liang P.H.( 2009) Individual and common inhibitors of coronavirus and picornavirus main proteases.?FEBS Lett.?583:549?555.
  15. Laskowski, R. A., Jabłońska, J., Pravda, L., Vařekov?, R. S., & Thornton, J. M. (2018). PDBsum: Structural summaries of PDB entries.?Protein science,?27(1), 129-134.
  16. Lee C.C., Kuo C.J., Hsu M.F., Liang P.H., Fang J.M., Shie J.J., Wang A.H.( 2007) Structural basis of mercury- and zinc-conjugated complexes as SARS-CoV 3C-like protease inhibitors.?FEBS Lett.?581:5454?5458.
  17. Lu I.L., Huang C.F., Peng Y.H., Lin Y.T., Hsieh H.P., Chen C.T., Lien T.W., Lee H.J., Mahindroo N., Prakash E. (2006) Structure-based drug design of a novel family of PPARgamma partial agonists: virtual screening, X-ray crystallography, and in vitro/in vivo biological activities.?J Med Chem.?49:2703?2712.
  18. McDonald IK, Thornton JM (1994) Satisfying hydrogen bonding potential in proteins. J MolBiol 238:777?793.
  19. McIntosh K (1974). Arber W, Haas R, Henle W, Hofschneider PH, Jerne NK, Koldovsk? P, Koprowski H, Maal?e O, Rott R.?\\\"Coronaviruses: A Comparative Review\\\".?Current Topics in Microbiology and Immunology / Ergebnisse der Mikrobiologie und Immunit?tsforschung. Current Topics in Microbiology and Immunology / Ergebnisse der Mikrobiologie und Immunit?tsforschung. Berlin, Heidelberg: Springer: 87, Vol 63.
  20. Oostra, M., teLintelo, E. G., Deijs, M., Verheije, M. H., Rottier, P. J., & de Haan, C. A. (2007). Localization and membrane topology of coronavirus nonstructural protein 4: involvement of the early secretory pathway in replication.?Journal of virology,?81(22), 12323?12336.
  21. Ramajayam R., Tan K.P., Liang P.H. (2011). Recent development of 3C and 3CL protease inhibitors for anti-coronavirus and anti-picornavirus drug discovery.?BiochemSoc Trans.?39:1371?1375.
  22. Ramajayam R., Tan K.P., Liu H.G., Liang P.H. (2010a) Synthesis and evaluation of pyrazolone compounds as SARS-coronavirus 3C-like protease inhibitors.?Bioorg Med Chem.?18:7849?7854.
  23. Ramajayam R., Tan K.P., Liu H.G., Liang P.H. (2010b) Synthesis, docking studies, and evaluation of pyrimidines as inhibitors of SARS-CoV 3CL protease.?Bioorg Med ChemLett.?20:3569?3572.
  24. Sagar, S., &JayaPrada, R. C. (2015, January). Periplaneta species brain proteins and their efficacy as antibiotics. In?International Conference on Advances in Biotechnology (BioTech). Proceedings?(p. 109). Global Science and Technology Forum.
  25. Shao Y.M., Yang W.B., Kuo T.H., Tsai K.C., Lin C.H., Yang A.S., Liang P.H., Wong C.H.( 2008) Design, synthesis, and evaluation of trifluoromethyl ketones as inhibitors of SARS-CoV 3CL protease.?Bioorg Med Chem.16:4652?4660.
  26. Shao Y.M., Yang W.B., Peng H.P., Hsu M.F., Tsai K.C., Kuo T.H., Wang A.H., Liang P.H., Lin C.H., Yang A.S. (2007) Structure-based design and synthesis of highly potent SARS-CoV 3CL protease inhibitors.?Chembiochem.?8:1654?1657.
  27. Shen, Y. F., Chen, Y. H., Chu, S. Y., Lin, M. I., Hsu, H. T., Wu, P. Y., Wu, C. J., Liu, H. W., Lin, F. Y., Lin, G., Hsu, P. H., Yang, A. S., Cheng, Y. S., Wu, Y. T., Wong, C. H., & Tsai, M. D. (2011). E339...R416 salt bridge of nucleoprotein as a feasible target for influenza virus inhibitors.?Proceedings of the National Academy of Sciences of the United States of America,?108(40), 16515?16520.
  28. Shie J.J., Fang J.M., Kuo C.J., Kuo T.H., Liang P.H., Huang H.J., Yang W.B., Lin C.H., Chen J.L., Wu Y.T. (2005 b) Discovery of potent anilide inhibitors against the severe acute respiratory syndrome 3CL protease.?J Med Chem.?48:4469?4473.
  29. Shie J.J., Fang J.M., Kuo T.H., Kuo C.J., Liang P.H., Huang H.J., Wu Y.T., Jan J.T., Cheng Y.S., Wong C.H. (2005 a) Inhibition of the severe acute respiratory syndrome 3CL protease by peptidomimeticalpha,beta-unsaturated esters.?Bioorg Med Chem. 13:5240?5252.
  30. Snijder, E. J., Decroly, E., &Ziebuhr, J. (2016). The Nonstructural Proteins Directing Coronavirus RNA Synthesis and Processing.?Advances in virus research,?96, 59?126
  31. Tovchigrechko,A. and Vakser,I.A. (2006) GRAMM-X public web server for protein-protein docking. Nucleic Acids Res., 34, W310?W314.
  32. Tsai K.C., Chen S.Y., Liang P.H., Lu I.L., Mahindroo N., Hsieh H.P., Chao Y.S., Liu L., Liu D., Lien W. (2006) Discovery of a novel family of SARS-CoV protease inhibitors by virtual screening and 3D-QSAR studies.?J Med Chem.?49:3485?3495.
  33. UniProt-Consortium. (2011) Ongoing and future developments at the universal protein resource. Nucleic Acids Res., 39, D214?D219
  34. Wallace AC, Laskowski RA (1995) Thornton JM. LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Protein Eng 8:127?134.
  35. Wu C, Liu Y, Yang Y, Zhang P, Zhong W, Wang Y, et al. (2020). \\\"Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods\\\".?ActaPharmaceuticaSinica B
  36. Wu C.Y., Jan J.T., Ma S.H., Kuo C.J., Juan H.F., Cheng Y.S., Hsu H.H., Huang H.C., Wu D., Brik A. (2004) Small molecules targeting severe acute respiratory syndrome human?coronavirus.?ProcNatlAcadSci U S A.?101:10012?10017.
  37. Wu C.Y., King K.Y., Kuo C.J., Fang J.M., Wu Y.T., Ho M.Y., Liao C.L., Shie J.J., Liang P.H., Wong C.H. (2006) Stable benzotriazole esters as mechanism-based inactivators of the severe acute respiratory syndrome 3CL protease.?Chem Biol.?13:261?268.
  38. Yang H., Xie W., Xue X., Yang K., Ma J., Liang W., Zhao Q., Zhou Z., Pei D., Ziebuhr J (2005). Design of wide-spectrum inhibitors targeting coronavirus main proteases.?PLoS Biol. 3:e324.
  39. Yang H., Yang M., Ding Y., Liu Y., Lou Z., Zhou Z., Sun L., Mo L., Ye S., Pang H (2003). The crystal structures of severe acute respiratory syndrome virus main protease and its complex with an inhibitor.?ProcNatlAcadSci U S A.?100:13190?13195.
  40. Zhang, L., Lin, D., Kusov, Y., Nian, Y., Ma, Q., Wang, J., von Brunn, A., Leyssen, P., Lanko, K., Neyts, J., de Wilde, A., Snijder, E. J., Liu, H., &Hilgenfeld, R. (2020). α-Ketoamides as Broad-Spectrum Inhibitors of Coronavirus and Enterovirus Replication: Structure-Based Design, Synthesis, and Activity Assessment.?Journal of medicinal chemistry, acs.jmedchem.9b01828. Advance online publication.

[Siddharth Sagar, Jayaprada Rao Chunduri and Vyomesh Javle (2020); AN ASSESSMENT OF THE INTERACTION BETWEEN INSECT BRAIN PROTEIN AND NON-STRUCTURAL PROTEIN OF CORONAVIRUS USING IN-SILICO ANALYSES Int. J. of Adv. Res. 8 (May). 436-452] (ISSN 2320-5407). www.journalijar.com


Siddharth Sagar
Department of Biotechnology, Mithibai College, Vile parle (w), Mumbai-400056.

DOI:


Article DOI: 10.21474/IJAR01/10945      
DOI URL: https://dx.doi.org/10.21474/IJAR01/10945