03Feb 2020

POTENT NANO CARRIERS FOR TARGETING BREAST CANCER

  • Department of Pharmaceutical Science, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru-570015, India.
  • Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru-570015, India.
  • Abstract
  • Keywords
  • References
  • Cite This Article as
  • Corresponding Author

Breast cancer (BC) is the most common cancer in female population. Triple-negative breast cancer (TNBC) is the subtype of breast cancer in which the three major receptors are absent. TNBC has very aggressive phenotype and high spreading rate/metastasis which often results in resistance to chemotherapy. Nano-medicines offer various promising approaches to BC and TNBC therapy because of its unique characteristics viz.nanometric size, high drug payload, targeting capabilities and capability to accommodate multiple therapeutic moieties.This review focuses on the conventional therapies, novel approaches and recent treatment strategies available for the therapeutic benefits to the patients. The role of cancer stem cell in the recurrence of BC and TNBC has also been highlighted. Moreover, the application of nanomedicines for the treatment of BC/TNBC and different molecular targets available for further exploration have also been discussed.Nanomedicines offers a right platform to develop multi-faceted treatment strategies to control the spread and recurrence of BC/TNBC. Researchers explored multiple pathways that can play a major role in controlling the progression of TNBC. Several chemotherapeutic agents were delivered using these nanocarriers with outstanding responses. Numerous targets were also reported that could stop/alter the specific pathway or receptor interaction.


  1. Greish K et al. Synthetic cannabinoids nano-micelles for the management of triple negative breast cancer. J Control Release 2018; 291: 184?195. doi:10.1016/j.jconrel.2018.10.030.
  2. https://www.who.int/cancer/prevention/diagnosis-screening/breast-cancer/en/.
  3. Thakur KK et al. Alarming Burden of Triple-Negative Breast Cancer in India. Clin Breast Cancer 2018; 18(3): e393?e399. doi:10.1016/j.clbc.2017.07.013.
  4. van Maaren MC et al. Ten-year recurrence rates for breast cancer subtypes in the Netherlands: A large population-based study. Int J Cancer 2019; 144(2): 263?272. doi:10.1002/ijc.31914.
  5. Massague J, Obenauf AC. Metastatic colonization by circulating tumour cells. Nature 2016; 529(7586): 298?306. doi:10.1038/nature17038.
  6. Chaffer CL, Weinberg RA. A perspective on cancer cell metastasis. Science (80- ) 2011; 331(6024): 1559?1564. doi:10.1126/science.1203543.
  7. DeSantis CE et al. Breast cancer statistics, 2017, racial disparity in mortality by state. CA Cancer J Clin 2017; 67(6): 439?448. doi:10.3322/caac.21412.
  8. Lauby-Secretan B et al. Breast-cancer screening--viewpoint of the IARC Working Group. N Engl J Med 2015; 372(24): 2353?2358. doi:10.1056/NEJMsr1504363.
  9. Vogel VG. Epidemiology, genetics, and risk evaluation of postmenopausal women at risk of breast cancer. Menopause 2008; 15(4 Suppl): 782?789. doi:10.1097/gme.0b013e3181788d88.
  10. Clarke M, Collins R, Darby S, Davies C, Elphinstone P, Evans V, Godwin J, Gray R, Hicks C, James S, MacKinnon E, McGale P, McHugh T, Peto R, Taylor C WYEBCTCG (EBCTCG). Effects of radiotherapy and of differences in the extent of surgery for early breast cancer on local recurrence and 15-year survival: An overview of the randomised trials. Lancet 2005; 366(9503): 2087?2106. doi:10.1016/S0140-6736(05)67887-7.
  11. Hern?ndez AL et al. Neoadjuvant treatment in breast cancer. Cancer Chemother Rev 2007; 2(2): 133?141. doi:10.1093/annonc/mds324.
  12. Talluri SV et al. Lipid-based nanocarriers for breast cancer treatment ? comprehensive review. Drug Deliv 2016; 23(4): 1291?1305. doi:10.3109/10717544.2015.1092183.
  13. Israel BB et al. Phytochemicals: Current strategies for treating breast cancer (review). Oncol Lett 2018; 15(5): 7471?7478. doi:10.3892/ol.2018.8304.
  14. Stover DG et al. Neoadjuvant and Adjuvant Chemotherapy Considerations for Triple-Negative Breast Cancer. Am J Hematol Oncol 2016; 12(3): 6?12. Available at: http://global.onclive.com/web-exclusives/neoadjuvant-and-adjuvant-chemotherapy-considerations-for-triple-negative-breast-cancer.
  15. Netti PA et al. Role of extracellular matrix assembly in interstitial transport in solid tumors. Cancer Res 2000; 60(9): 2497?2503.
  16. Palma G et al. Antitumor activity of PEGylated biodegradable nanoparticles for sustained release of docetaxel in triple-negative breast cancer. Int J Pharm 2014; 473(1?2): 55?63. doi:10.1016/j.ijpharm.2014.06.058.
  17. Zhang Y et al. Tumor-Targeting Micelles Based on Linear-Dendritic PEG-PTX 8 Conjugate for Triple Negative Breast Cancer Therapy. Mol Pharm 2017; 14(10): 3409?3421. doi:10.1021/acs.molpharmaceut.7b00430.
  18. Salvador-Morales C et al. Immunocompatibility properties of lipid-polymer hybrid nanoparticles with heterogeneous surface functional groups. Biomaterials 2009; 30(12): 2231?2240. doi:10.1016/j.biomaterials.2009.01.005.
  19. Pan B et al. Cellular uptake enhancement of polyamidoamine dendrimer modified single walled carbon nanotubes. ICBPE 2006 - Proc 2006 Int Conf Biomed Pharm Eng 2006: 541?544. doi:10.1109/ICBPE.2006.348653.
  20. Park John W. Liposome-based drug delivery in breast cancer treatment. Breast Cancer Res 2002; 4(3): 95?99. Available at: http://breast-cancer-research.com/content/4/3/095.
  21. Ahmed M, Douek M. The role of magnetic nanoparticles in the localization and treatment of breast cancer. Biomed Res Int 2013; 2013. doi:10.1155/2013/281230.
  22. De Sousa Cunha F et al. Development of nanoparticulate systems with action in breast and ovarian cancer: nanotheragnostics. J Drug Target 2018.
  23. Nurunnabi M et al. In vivo biodistribution and toxicology of carboxylated graphene quantum dots. ACS Nano 2013; 7(8): 6858?6867. doi:10.1021/nn402043c.
  24. Xie R et al. Highly Water-soluble and Surface Charge-tunable Fluorescent Fullerene Nanoparticles: Facile Fabrication and Cellular Imaging. Electrochim Acta 2016; 201: 220?227. doi:10.1016/j.electacta.2016.03.198.
  25. Liu Z et al. PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. J Am Chem Soc 2008; 130(33): 10876?10877. doi:10.1021/ja803688x.
  26. Zhou T et al. Energy metabolism analysis reveals the mechanism of inhibition of breast cancer cell metastasis by PEG-modified graphene oxide nanosheets. Biomaterials 2014; 35(37): 9833?9843. doi:10.1016/j.biomaterials.2014.08.033.
  27. Rokade SS et al. Gloriosa superba Mediated Synthesis of Platinum and Palladium Nanoparticles for Induction of Apoptosis in Breast Cancer. Bioinorg Chem Appl 2018; 2018. doi:10.1155/2018/4924186.
  28. Ghosh S, N Harke A. Gloriosa superba Mediated Synthesis of Silver and Gold Nanoparticles for Anticancer Applications. J Nanomed Nanotechnol 2016; 7(4). doi:10.4172/2157-7439.1000390.
  29. Muthukrishnan S et al. Anticancer effects of silver nanoparticles encapsulated by Gloriosa superba (L.) leaf extracts in DLA tumor cells. Futur J Pharm Sci 2018; 4(2): 206?214. doi:10.1016/j.fjps.2018.06.001.
  30. Deng J et al. Tumor targeted, stealthy and degradable bismuth nanoparticles for enhanced X-ray radiation therapy of breast cancer. Biomaterials 2018; 154: 24?33. doi:10.1016/j.biomaterials.2017.10.048.
  31. Hernandez-Delgadillo R et al. In vitro evaluation of the antitumor effect of bismuth lipophilic nanoparticles (BisBAL NPs) on breast cancer cells. Int J Nanomedicine 2018; 13: 6089?6097. doi:10.2147/IJN.S179095.
  32. Malarvizhi GL et al. A rationally designed photo-chemo core-shell nanomedicine for inhibiting the migration of metastatic breast cancer cells followed by photodynamic killing. Nanomedicine Nanotechnology, Biol Med 2014; 10(3): 579?587. doi:10.1016/j.nano.2013.10.006.
  33. Thakor V et al. Exploring the anti-breast cancer potential of flavonoid analogs. RSC Adv 2016; 6(82): 79166?79179. doi:10.1039/c6ra14428d.
  34. Anantharaju PG et al. An overview on the role of dietary phenolics for the treatment of cancers. Nutr J 2016; 15(1). doi:10.1186/s12937-016-0217-2.
  35. Diseases E et al. Bioactivity of Nano-sized Nutraceuticals Against Cancer. 2017; (January).
  36. Feng C et al. Chitosan/o-carboxymethyl chitosan nanoparticles for efficient and safe oral anticancer drug delivery: In vitro and in vivo evaluation. Int J Pharm 2013; 457(1): 158?167. doi:10.1016/j.ijpharm.2013.07.079.
  37. Spagnuolo C et al. Genistein and Cancer: Current Status, Challenges, and Future Directions. Adv Nutr 2015; 6(4): 408?419. doi:10.3945/an.114.008052.
  38. Zhang H et al. Fabrication of genistein-loaded biodegradable TPGS-b-PCL nanoparticles for improved therapeutic effects in cervical cancer cells. Int J Nanomedicine 2015; 10: 2461?2473. doi:10.2147/IJN.S78988.
  39. Feng C et al. Preparation and optimization of poly (lactic acid) nanoparticles loaded with fisetin to improve anti-cancer therapy. Int J Biol Macromol 2019; 125: 700?710. doi:10.1016/j.ijbiomac.2018.12.003.
  40. Meng H et al. Codelivery of an optimal drug/siRNA combination using mesoporous silica nanoparticles to overcome drug resistance in breast cancer in vitro and in vivo. ACS Nano 2013; 7(2): 994?1005. doi:10.1021/nn3044066.
  41. Draz MS et al. Nanoparticle-mediated systemic delivery of siRNA for treatment of cancers and viral infections. Theranostics 2014; 4(9): 872?892. doi:10.7150/thno.9404.
  42. Darvishi B et al. Stimuli-Responsive Mesoporous Silica NPs as Non-viral Dual siRNA/Chemotherapy Carriers for Triple Negative Breast Cancer. Mol Ther - Nucleic Acids 2017; 7: 164?180. doi:10.1016/j.omtn.2017.03.007.
  43. Brown JS et al. PARP inhibitors: The race is on. Br J Cancer 2016; 114(7): 713?715. doi:10.1038/bjc.2016.67.
  44. Miller K et al. Paclitaxel plus bevacizumab versus paclitaxel alone for metastatic breast cancer. N Engl J Med 2007; 357(26): 2666?2676. doi:10.1056/NEJMoa072113.
  45. Nielsen TO et al. Immunohistochemical and clinical characterization of the basal-like subtype of invasive breast carcinoma. Clin Cancer Res 2004; 10(16): 5367?5374. doi:10.1158/1078-0432.CCR-04-0220.
  46. Carey LA et al. TBCRC 001: Randomized phase II study of cetuximab in combination with carboplatin in stage IV triple-negative breast cancer. J Clin Oncol 2012; 30(21): 2615?2623. doi:10.1200/JCO.2010.34.5579.
  47. Kydd J et al. Targeting strategies for the combination treatment of cancer using drug delivery systems. Pharmaceutics 2017; 9(4). doi:10.3390/pharmaceutics9040046.
  48. Lu B et al. Drug delivery using nanoparticles for cancer stem-like cell targeting. Front Pharmacol 2016; 7. doi:10.3389/fphar.2016.00084.
  49. Muntimadugu E et al. CD44 targeted chemotherapy for co-eradication of breast cancer stem cells and cancer cells using polymeric nanoparticles of salinomycin and paclitaxel. Colloids Surfaces B Biointerfaces 2016; 143: 532?546. doi:10.1016/j.colsurfb.2016.03.075.
  50. Luo J et al. The Notch pathway promotes the cancer stem cell characteristics of CD90+ cells in hepatocellular carcinoma. Oncotarget 2016; 7(8): 9525?9537. doi:10.18632/oncotarget.6672.
  51. Li SY et al. Combination therapy with epigenetic-targeted and chemotherapeutic drugs delivered by nanoparticles to enhance the chemotherapy response and overcome resistance by breast cancer stem cells. J Control Release 2015; 205: 7?14. doi:10.1016/j.jconrel.2014.11.011.
  52. Zhu P et al. C8orf4 negatively regulates self-renewal of liver cancer stem cells via suppression of NOTCH2 signalling. Nat Commun 2015; 6. doi:10.1038/ncomms8122.
  53. Zuo ZQ et al. Promoting tumor penetration of nanoparticles for cancer stem cell therapy by TGF-β signaling pathway inhibition. Biomaterials 2016; 82: 48?59. doi:10.1016/j.biomaterials.2015.12.014.
  54. Tomar D et al. Non-coding RNAs as potential therapeutic targets in breast cancer. Biochim Biophys Acta - Gene Regul Mech 2019. doi:10.1016/j.bbagrm.2019.04.005.
  55. Avitabile E et al. How can nanotechnology help the fight against breast cancer? Nanoscale 2018; 10(25): 11719?11731. doi:10.1039/c8nr02796j.

[Meghna Sangam and Nithish Shekar (2020); POTENT NANO CARRIERS FOR TARGETING BREAST CANCER Int. J. of Adv. Res. 8 (Feb). 1163-1174] (ISSN 2320-5407). www.journalijar.com


Nithish Shekar
JSS College of Pharmacy

DOI:


Article DOI: 10.21474/IJAR01/10562      
DOI URL: https://dx.doi.org/10.21474/IJAR01/10562