15Nov 2019

ISOLATION, IDENTIFICATION AND SCREENING OF HALOPHILIC BACTERIA FOR POLYHYDROXYALKANOATE (PHA) IN HYPERSALINE LAGOS WATER BODY, NIGERIA

  • Redeemers University, Department of Biological Sciences, Faculty of Natural Sciences, PMB 230, Ede, Osun State, Nigeria
  • Federal University of Technology, Akure (FUTA), Department of Biotechnology, PMB 704, Akure, Ondo State, Nigeria
  • Abstract
  • Keywords
  • References
  • Cite This Article as
  • Corresponding Author

This study aims to identify bacteria associated with hypersaline water body in Lagos State, Nigeria, screen them for their potential to produce polyhydroxyalkanoates (PHA) and determine the physicochemical properties of the water. Enumeration, identification and testing for growth at 3% w/v NaCl were carried out using standard microbiological techniques. Screening for PHA production potential of the bacteria was carried out using Sudan Black B staining techniques. Physicochemical analysis of the water (at depths of 0-0.07m, 50m and 100m) was determined using the methods of Association of Official Analytical Chemists. The highest and lowest bacterial loads of 20.66 ? 0.47 Cfu/mL and 10.00 ? 0.82 Cfu/mL were obtained from depth 50m respectively. Eighteen (18) bacteria namely Micrococcus varians, M. luteus, Bacillus badius, B. macquariensis, B. megaterium, Corynebacterium kutsceri, Mycobacterium delbrueckii, Mycobacterium smegmatis, Staphylococcus aureus, Staphylococcus saprophyticus, Staphylococcus epidermidis, Lactobacillus delbrueckii, Klebsiella pneumoniae subsp. pneumoniae, Neisseria veillonella, Enterobacter intermedius, Enterobacter amnigenus, Serratia marcescens and Yersinia pestis were phenotypically identified from this study using Bergeys Manual of Systematic Bacteriology. The test for growth at 3% w/v NaCl revealed that Bacillus badius had the highest optical density (OD) (2.84) at 520nm, while Serratia mercescens had the lowest OD (2.61) at 520nm. The physicochemical parameters of the hypersaline water ranged from 0.17 to 37.4NTU, 37300 to 43500μS/cm and 10 to 130mg/mL for turbidity, conductivity and alkalinity respectively. The values obtained for Dissolved Oxygen, Chemical Oxygen Demand and Biochemical Oxygen Demand ranged from 4.08 to 4.42mg/L, 4.21 to 3699mg/L and 4.21 to 924.75mg/L respectively. Findings from this study revealed that 88.1% of the bacteria tested positive to PHA production and the presence of PHA producing bacteria has been established in the hypersaline water body of Lagos State, Nigeria


  1. Aditi, S., Souza Shalet, N., Pranesh, R., & Katyayini, T. (2015). Microbial production of polyhydroxyalkanoates (PHA) from novel sources: a review. Int J RBS, 4, 16-28.
  2. Anihouvi, V., Sakyi-Dawson, E., Ayernor, G., & Hounhouigan, J. (2007). Microbiological changes in naturally fermented cassava fish (Pseudotolithus sp.) for lanhouin production. International journal of food microbiology, 116(2), 287-291.
  3. Barksdale, L., Linder, R., Sulea, I. T., & Pollice, M. (1981). Phospholipase D activity of Corynebacterium pseudotuberculosis (Corynebacterium ovis) and Corynebacterium ulcerans, a distinctive marker within the genus Corynebacterium. Journal of clinical microbiology, 13(2), 335-343.
  4. Bergey, D. H., Breed, R. S., Murray, E. G. D., & Hitchens, A. P. (1939). Manual of determinative bacteriology. Manual of determinative bacteriology. Fifth Edn.
  5. Board, N. (2004). Polymers and Plastics Technology Handbook: ASIA PACIFIC BUSINESS PRESS Inc.
  6. Breitburg, D., Levin, L. A., Oschlies, A., Gr?goire, M., Chavez, F. P., Conley, D. J., et al. (2018). Declining oxygen in the global ocean and coastal waters. Science, 359(6371), eaam7240.
  7. Bugnicourt, E., Cinelli, P., Lazzeri, A., & Alvarez, V. A. (2014). Polyhydroxyalkanoate (PHA): Review of synthesis, characteristics, processing and potential applications in packaging.
  8. Ceyhan, N., & Ozdemir, G. (2011). Poly--hydroxybutyrate (PHB) production from domestic wastewater using Enterobacter aerogenes 12Bi strain. African Journal of Microbiology Research, 5(6), 690-702.
  9. Chao, M. C., Kieser, K. J., Minami, S., Mavrici, D., Aldridge, B. B., Fortune, S. M., et al. (2013). Protein complexes and proteolytic activation of the cell wall hydrolase RipA regulate septal resolution in mycobacteria. PLoS pathogens, 9(2), e1003197.
  10. DasSarma, S., & DasSarma, P. (2012). Halophiles: Wiley Online Library.
  11. DasSarma, S. L., Capes, M. D., DasSarma, P., & DasSarma, S. (2010). HaloWeb: the haloarchaeal genomes database. Saline Systems, 6(1), 12.
  12. de Lourdes Moreno, M., P?rez, D., Garc?a, M. T., & Mellado, E. (2013). Halophilic bacteria as a source of novel hydrolytic enzymes. Life, 3(1), 38-51.
  13. Denis, C., Gueguen, M., Henry, E., & Levert, D. (2001). New media for the numeration of cheese surface bacteria. Le Lait, 81(3), 365-379.
  14. Elabed, H., Gonz?lez-Tortuero, E., Ibacache-Quiroga, C., Bakhrouf, A., Johnston, P., Gaddour, K., ... & Rodr?guez-Rojas, A. (2019). Seawater salt-trapped Pseudomonas aeruginosa survives for years and gets primed for salinity tolerance. BMC Microbiology, 19(1), 142.
  15. Grasshoff, K., Kremling, K., & Ehrhardt, M. (2009). Methods of seawater analysis: John Wiley & Sons.
  16. Ibtisam, Kamal and Allaf Karim. ?Review Paper (SS-1) Impact of global warming, Military conflicts and industrial processing wastes on environment.? (2012).
  17. Halami, P. M. (2008). Production of polyhydroxyalkanoate from starch by the native isolate Bacillus cereus CFR06. World Journal of Microbiology and Biotechnology, 24(6), 805-812.
  18. Hall, C. (1981). Polymer Materials and their Technology Polymer Materials (pp. 141-183): Springer.
  19. Kaye, J. Z., & Baross, J. A. (2004). Synchronous effects of temperature, hydrostatic pressure, and salinity on growth, phospholipid profiles, and protein patterns of four Halomonas species isolated from deep-sea hydrothermal-vent and sea surface environments. Environ. Microbiol., 70(10), 6220-6229.
  20. Khanna, S., & Srivastava, A. K. (2005). Recent advances in microbial polyhydroxyalkanoates. Process biochemistry, 40(2), 607-619.
  21. Kosseva, Maria R, and Colin Webb. Food Industry Wastes: Assessment and Recuperation of Commodities. , 2013. Internet resource.
  22. Kushner, D. J. (1978). Microbial life in extreme environments: Academic Press.
  23. Madigan, M. T., & Martinko, J. M. (2006). Microorganisms and microbiology. Brock biology of microorganisms. 11th ed. Upper Saddle River, New Jersey (NJ): Pearson Prentice Hall, 1-20.
  24. Manikandan, P., & Senthilkumar, P. K. (2017). On overview of saltpan halophilic bacterium.
  25. Mojaveryazdia, F. S., Zainb, N. A. B. M., & Rezaniac, S. (2013). Production of biodegradable polymers (PHA) through low cost carbon sources: green chemistry. International Journal, 4(3).
  26. Naik, P. R., Raman, G., Narayanan, K. B., & Sakthivel, N. (2008). Assessment of genetic and functional diversity of phosphate solubilizing fluorescent pseudomonads isolated from rhizospheric soil. BMC microbiology, 8(1), 230.
  27. Olabisi, O., & Adewale, K. (2016). Handbook of thermoplastics: CRC press.
  28. Ollivier, B., Caumette, P., Garcia, J.-L., & Mah, R. (1994). Anaerobic bacteria from hypersaline environments. Microbiology and molecular biology reviews, 58(1), 27-38.
  29. Oren, A. (2002). Molecular ecology of extremely halophilic Archaea and Bacteria. FEMS Microbiology Ecology, 39(1), 1-7.
  30. Oren, A. (2013). Life at high salt concentrations. The prokaryotes: Prokaryotic communities and ecophysiology, 421-440.
  31. Parthasarathi, S., & BALAKRISHNAN, K. (2013). Isolation, Characterization and Bioprospecting of a selected marine actinomycete.
  32. Reddy, C., Ghai, R., & Kalia, V. C. (2003). Polyhydroxyalkanoates: an overview. Bioresource Technology, 87(2), 137-146.
  33. Saharan, P., Chaudhary, G. R., Mehta, S., & Umar, A. (2014). Removal of water contaminants by iron oxide nanomaterials. Journal of nanoscience and nanotechnology, 14(1), 627-643.
  34. Santini, T. C., Kerr, J. L., & Warren, L. A. (2015). Microbially-driven strategies for bioremediation of bauxite residue. Journal of Hazardous Materials, 293, 131-157.
  35. Saranya, V., & Shenbagarathai, R. (2011). Production and characterization of PHA from recombinant E. coli harbouring phaC1 gene of indigenous Pseudomonas sp. LDC-5 using molasses. Brazilian Journal of Microbiology, 42(3), 1109-1118.
  36. Tissari, P., Zumla, A., Tarkka, E., Mero, S., Savolainen, L., Vaara, M., et al. (2010). Accurate and rapid identification of bacterial species from positive blood cultures with a DNA-based microarray platform: an observational study. The Lancet, 375(9710), 224-230.
  37. Tissot, B. P., and Welte, D. H. (2013). Petroleum formation and occurrence: Springer Science & Business Media.
  38. Zhang, Y., Li, X., Bartlett, D. H., and Xiao, X. (2015). Current developments in marine microbiology: high-pressure biotechnology and the genetic engineering of piezophiles. Current opinion in biotechnology, 33, 157-164.
 

[Fayemi, Scott O, Boboye Bolatito and Olukunle Oluwatoyin F (2019); ISOLATION, IDENTIFICATION AND SCREENING OF HALOPHILIC BACTERIA FOR POLYHYDROXYALKANOATE (PHA) IN HYPERSALINE LAGOS WATER BODY, NIGERIA Int. J. of Adv. Res. 7 (Nov). 470-481] (ISSN 2320-5407). www.journalijar.com


FAYEMI, Scott Oluremi
Redeemer’s University, Department of Biological Sciences, Faculty of Natural Sciences, PMB 230, Ede, Osun State, Nigeria; Federal University of Technology, Akure (FUTA), Department of Microbiology, PMB 704, Akure, Ondo State, Nigeria.

DOI:


Article DOI: 10.21474/IJAR01/10033      
DOI URL: https://dx.doi.org/10.21474/IJAR01/10033