11Jun 2019

SYNTHESIS, CHARACTERIZATION AND BIOLOGICAL ACTIVITIES OF BIOINORGANIC COMPLEXES OF MOXIFLOXACIN.

  • Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Pakistan.
  • Department of Microbiology, University of Karachi, Pakistan.
  • Abstract
  • Keywords
  • References
  • Cite This Article as
  • Corresponding Author

Background: The growth of different organisms is controlled by drug-metal complexes which are injurious to humans. Moxifloxacin is one of the fourth generation fluoroquinolone antibiotics which inhibits DNA gyrase (a type II topoisomerase and topoisomerase IV). A number of studies were conducted on the Moxifloxacin-metal complexes regarding their biological applications. In this study synthesis and characterization of three moxifloxacin- biometal complexes with Zn(I), Ni(VI) and Co(VIII) was done and their antibacterial and antioxidant effects were studied. Methods: Moxifloxacin- zinc chloride, nickel chloride and cobalt chloride were synthesized by mixing solutions of zinc chloride, nickel chloride and cobalt chloride with the ethanolic solution of Moxifloxacin. These metal complexes were characterized by physio-chemical techniques such as FTIR, 1 H- NMR, and UV-Vis. To study the antibacterial effects of Moxifloxacin-metal complexes agar well diffusion method was used. Antioxidant activity was determined by DPPH free radical scavenging method. Results: The structural assessment of these complexes has been carried out based on physio- chemical and spectroscopic methods. The FTIR spectra and 1H NMR clearly showed that metal-moxifloxacin complexes are formed due to change in their carboxyl stretching band in IR, H-2 and H-5 peak position in 1H NMR. Further, Zn(I), Ni(VI) and Co(VIII), moxifloxacin metal complexes have shown significant antibacterial activity against gram-positive and gram-negative bacteria. Conclusions: The spectral and analytical results clearly confirmed the coordination chemistry of Zn(I), Ni(VI) and Co(VIII). The moxifloxacin?Ni(VI) and Co(VIII) metal complexes showed high antibacterial activity compared to moxifloxacin--Zn(I). The antibacterial activity indicates that metal complexes have higher biological activity than parent drug (moxifloxacin).


1. Ahmad M. (2018). Pakistan is racing to combat the world's first extensively drug-resistant typhoid outbreak. Sci Am. March 14, 2018 2. Ali, H. R. H., Ali, R., Batakoushy, H. A., & Derayea, S. M. (2017). Spectroscopic Analysis and Antibacterial Evaluation of Certain Third Generation Cephalosporins Through Metal Complexation. Analytical Chemistry Letters, 7(4), 445-457. 3. Ali, K. A., Abd-Elzaher, M. M., & Mahmoud, K. (2013). Synthesis and anticancer properties of silver (I) complexes containing 2, 6-Bis (substituted) pyridine derivatives. International journal of medicinal chemistry, 2013. 4. Andriole, V. T. (2005). The Quinolones: Past, Present, and Future. Clinical Infectious Diseases, 41(Supplement_2), S113-S119. doi: 10.1086/428051 5. Biswas, M., Haldar, P. K., & Ghosh, A. K. (2010). Antioxidant and free-radical-scavenging effects of fruits of Dregea volubilis. Journal of natural science, biology, and medicine, 1(1), 29. 6. Blair, J. M., Webber, M. A., Baylay, A. J., Ogbolu, D. O., & Piddock, L. J. (2015). Molecular mechanisms of antibiotic resistance. Nature reviews microbiology, 13(1), 42. 7. Chiririwa, H., & Muzenda, E. (2014). Synthesis, Characterization of Gold (III) Complexes and an in vitro Evaluation of their Cytotoxic Properties. 8. Cuprys, A., Pulicharla, R., Brar, S. K., Drogui, P., Verma, M., & Surampalli, R. Y. (2018). Fluoroquinolones metal complexation and its environmental impacts. Coordination Chemistry Reviews, 376, 46-61. 9. Demir, S., Gelincik, A., Akdeniz, N., Aktas-Cetin, E., Olgac, M., Unal, D., . . . Deniz, G. (2017). Usefulness of in vivo and in vitro diagnostic tests in the diagnosis of hypersensitivity reactions to quinolones and in the evaluation of cross-reactivity: a comprehensive study including the latest quinolone gemifloxacin. Allergy, asthma & immunology research, 9(4), 347-359. 10. Efthimiadou, E. K., Karaliota, A., & Psomas, G. (2008). Mononuclear dioxomolybdenum (VI) complexes with the quinolones enrofloxacin and sparfloxacin: Synthesis, structure, antibacterial activity and interaction with DNA. Polyhedron, 27(1), 349-356. 11. Efthimiadou, E. K., Sanakis, Y., Raptopoulou, C. P., Karaliota, A., Katsaros, N., & Psomas, G. (2006). Crystal structure, spectroscopic, and biological study of the copper (II) complex with third-generation quinolone antibiotic sparfloxacin. Bioorganic & medicinal chemistry letters, 16(14), 3864-3867. 12. Elshafie, H. S., Sakr, S. H., Sadeek, S. A., & Camele, I. (2019). Biological investigations and spectroscopic studies of new Moxifloxacin/Glycine‐Metal complexes. Chemistry & biodiversity. 13. Fernandes, P., & Martens, E. (2017). Antibiotics in late clinical development. Biochemical pharmacology, 133, 152-163. 14. Imran, M., Iqbal, J., Iqbal, S., & Ijaz, N. (2007). In vitro antibacterial studies of ciprofloxacin-imines and their complexes with Cu (II), Ni (II), Co (II), and Zn (II). Turkish journal of biology, 31(2), 67-72. 15. Kadyrov, A., Neda, I., Kaukorat, T., Sonnenberg, R., Fischer, A., Jones, P., & Schmutzler, R. (1996). New Phospholene and Phosphepine Derivatives from lambda^ 3-Phosphorus Compounds and Hexafluoroacetone or Perfluorinated -Diketones. Chemische Berichte, 129, 725-732. 16. Kelly, F. (1998). Use of antioxidants in the prevention and treatment of disease. Journal of the International Federation of Clinical Chemistry, 10(1), 21-23. 17. Klemm, E. J., Shakoor, S., Page, A. J., Qamar, F. N., Judge, K., Saeed, D. K., . . . Baker, S. (2018). Emergence of an extensively drug-resistant Salmonella enterica serovar Typhi clone harboring a promiscuous plasmid encoding resistance to fluoroquinolones and third-generation cephalosporins. MBio, 9(1), e00105-00118. 18. Kondaiah, S., Bhagavanth Reddy, G., Rajesh, D., & Vijayakumr, B. (2017). Synthesis, characterization and biological activity of moxifloxacin-cu (II) metal complex. IJETSR, 4(12), 1138-1145. 19. Kunze, C., Neda, I., Freytag, M., Jones, P. G., & Schmutzler, R. (2002). Mono‐and Binuclear Rhodium and Platinum Complexes of 1, 3, 5‐Trimethyl‐1, 3, 5‐triaza‐2σ3λ3‐phosphorin‐4, 6‐dionyloxy‐substituted Calix [4] arenes. Zeitschrift f?r anorganische und allgemeine Chemie, 628(3), 545-552. 20. Luepke, K. H., Suda, K. J., Boucher, H., Russo, R. L., Bonney, M. W., Hunt, T. D., & Mohr III, J. F. (2017). Past, present, and future of antibacterial economics: increasing bacterial resistance, limited antibiotic pipeline, and societal implications. Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy, 37(1), 71-84. 21. Maftei, C. V., Fodor, E., Jones, P. G., Franz, M. H., Kelter, G., Fiebig, H., & Neda, I. (2013). Synthesis and characterization of novel bioactive 1, 2, 4-oxadiazole natural product analogs bearing the N-phenylmaleimide and N-phenylsuccinimide moieties. Beilstein journal of organic chemistry, 9, 2202. 22. Maftei, E., Maftei, C. V., Jones, P. G., Freytag, M., Franz, M. H., Kelter, G., . . . Neda, I. (2016). Trifluoromethylpyridine‐Substituted N‐Heterocyclic Carbenes Related to Natural Products: Synthesis, Structure, and Potential Antitumor Activity of some Corresponding Gold (I), Rhodium (I), and Iridium (I) Complexes. Helvetica Chimica Acta, 99(6), 469-481. 23. Mihorianu, M., Franz, M. H., Jones, P. G., Freytag, M., Kelter, G., Fiebig, H. H., . . . Neda, I. (2016). N‐Heterocyclic carbenes derived from imidazo‐[1, 5‐a] pyridines related to natural products: synthesis, structure and potential biological activity of some corresponding gold (I) and silver (I) complexes. Applied Organometallic Chemistry, 30(7), 581-589. 24. Mishra, K., Ojha, H., & Chaudhury, N. K. (2012). Estimation of antiradical properties of antioxidants using DPPH assay: A critical review and results. Food chemistry, 130(4), 1036-1043. 25. Murray, G. L., Bradshaw, C. S., Bissessor, M., Danielewski, J., Garland, S. M., Jensen, J. S., . . . Tabrizi, S. N. (2017). Increasing macrolide and fluoroquinolone resistance in Mycoplasma genitalium. Emerging infectious diseases, 23(5), 809. 26. Nakamoto, K., & McCarthy, P. J. (1968). Spectroscopy and structure of metal chelate compounds: Wiley. 27. Neda, I., Melnicky, C., Vollbrecht, A., & Schmutzler, R. (1996). An unusual N-alkylation reaction during the oxidative addition of hexafluoroacetone and tetrachloro-o-benzoquinone to P-bis (2-chloroethyl) amino-substituted λ3P-compounds. Synthesis, 1996(04), 473-474. 28. Neda, I., Plinta, H. J., & Schmutzler, R. (1993). Reactions of 1, 3‐Dialkyl‐1, 3‐diaza‐2‐chloro‐5, 6‐benzo‐1, 3, 2‐phosphorinan‐4‐ones; Preparation of P (III) Derivatives. ChemInform, 24(29), no-no. 29. Odeyemi, S., Afolayan, A., & Bradley, G. (2017). Phytochemical analysis and anti-oxidant activities of Albuca bracteata Jacq. and Albuca setosa Jacq bulb extracts used for the management of diabetes in the Eastern Cape, South Africa. Asian Pacific Journal of Tropical Biomedicine, 7(6), 577-584. 30. Rafique, S., Idrees, M., Nasim, A., Akbar, H., & Athar, A. (2010). Transition metal complexes as potential therapeutic agents. Biotechnology and Molecular Biology Reviews, 5(2), 38-45. 31. Refaat, H. M., El-Badway, H. A., & Morgan, S. M. (2016). Molecular docking, geometrical structure, potentiometric and thermodynamic studies of moxifloxacin and its metal complexes. Journal of Molecular Liquids, 220, 802-812. 32. Sadeek, S. A., El-Shwiniy, W. H., & El-Attar, M. S. (2011). Synthesis, characterization and antimicrobial investigation of some moxifloxacin metal complexes. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 84(1), 99-110. 33. Skuredina, A., Le-Deygen, I., Uporov, I., & Kudryashova, E. (2017). A study of the physicochemical properties and structure of moxifloxacin complex with methyl-β-cyclodextrin. Colloid Journal, 79(5), 668-676. 34. Soayed, A. A., Refaat, H. M., & El-Din, D. A. N. (2013). Metal complexes of moxifloxacin?imidazole mixed ligands: Characterization and biological studies. Inorganica Chimica Acta, 406, 230-240. 35. Sonnenburg, R., Neda, I., Fischer, A., Jones, P., & Schmutzler, R. (1994). Compounds Involving the 5, 6‐Benzo‐1, 3, 2‐diazaphosphorinane‐4‐one Ring System: Synthesis of 2‐Chloro‐, 2‐N, N‐Dimethylamino‐and 2‐Bis‐(2‐chloroethyl) amino‐Substituted Derivatives with Three‐and Four‐Coordinated Phosphorus. ChemInform, 25(48), no-no. 36. Tiwari, A. K. (2001). Imbalance in antioxidant defence and human diseases: Multiple approach of natural antioxidants therapy. Current science, 1179-1187. 37. Tulkens, P. M., Arvis, P., & Kruesmann, F. (2012). Moxifloxacin safety. Drugs in R&D, 12(2), 71-100. 38. Ventola, C. L. (2015). The antibiotic resistance crisis: part 1: causes and threats. Pharmacy and Therapeutics, 40(4), 277.

[Gul Muhammad, Fouzia Haider and Asia Naz. (2019); SYNTHESIS, CHARACTERIZATION AND BIOLOGICAL ACTIVITIES OF BIOINORGANIC COMPLEXES OF MOXIFLOXACIN. Int. J. of Adv. Res. 7 (Jun). 349-357] (ISSN 2320-5407). www.journalijar.com


FOUZIA HAIDER
Department of Microbiology, University of Karachi, Pakistan

DOI:


Article DOI: 10.21474/IJAR01/9231      
DOI URL: https://dx.doi.org/10.21474/IJAR01/9231