TRIORGANOTIN PHOSPHONATES POLYMERIC CHAINS - SYNTHESIS, INFRARED, MOSSBAUER AND SINGLE CRYSTAL CHARACTERIZATION:THE FIRST ORGANOTIN(IV) PH2- BRIDGED.

- Laboratoire de Chimie Min?rale et Analytique (LA.CHI.MI.A.), D?partement de Chimie, Facult? des Sciences et Techniques, Universit? Cheikh Anta Diop, Dakar, S?n?gal.
- D?partement de Physique-Chimie, Facult? des Sciences et Technologies de l?Education et de la Formation (FASTEF), Universit? Cheikh Anta Diop, Dakar, S?n?gal.
- Institut de Chimie de la Mati?re Condens?e de Bordeaux, CNRS-Universit? de Bordeaux, 87 Avenue du Docteur A. Schweitzer 33608 Pessac, France.
- D?partement de Chimie, Universit? de Montr?al, 2900 Boulevard ?douard-Montpetit, Montr?al, Qu?bec, Canada, H3C 3J7.
- Abstract
- Keywords
- References
- Cite This Article as
- Corresponding Author
Two triorganotin(IV) phosphonate compounds were isolated and structurally investigated by infrared and M?ssbauer spectroscopies and X-ray crystallography. The reactionoftrimethyltin(IV) chloride (SnMe3Cl) and hexamethylenetetraammonium hydrogen methylphosphonate[CH3PO3H][N4(CH2)6H] led to the formation of [C10H34O4P2Sn3] (1) which crystallizes in the Monoclinic space group Pn with Z = 2, a = 8.4955 (2) ?, b = 11.318 (3) ?, c = 11.902 (2) ?, β = 90.9340 (10)? and V = 1144.2 (4) ?3. An uncommon decomposition of methylphosphonate occurred during the reaction process giving rise to the formation of dimers of [SnMe3PH2SnMe3]+. The structure of 1 consists of an anionic chain of [CH3PO3(SnMe3PH2SnMe3)]? linked to [SnMe3(H2O)]+ moieties through Sn?O bonds involving the remaining oxygen atoms of the methylphosphonates. In the chain, each SnMe3 residue is coordinated by one methylphosphonate and one phosphor atom, in a trans-trigonal bipyramidal PSnC3O geometry. The environment at tin atoms in both SnMe3 moieties is an octahedron. The methylphosphonate anion is otherwise in a general position and behaves as a tri-coordinating ligand. The reactionoftriphenyltin(IV) hydroxide (SnPh3OH) and phosphorous acid (HPO(OH)2) led to the formation of [C36H31O3PSn2] (2) which crystallizes in the Monoclinic space group P2/n with Z = 4, a = 11.7966 (4) ?, b = 10.1953 (4) ?, c = 27.6715 (10) ?, β = 94.600 (2)? and V = 3317.3 (2) ?3. The structure of 2 is comprised of an anionic chain of [HPO3(SnPh3)]? linked to SnPh3 moieties through Sn?O bonds involving the remaining oxygen atoms of the hydrogenphosphonates. In the chain the SnPh3 residues are each one coordinated by two hydrogenphosphonates in a trans-trigonal bipyramidal OSnC3O arrangement. The geometry at tin atoms within the monocoordinated SnPh3 moieties connected to the chain is a distorted tetrahedron. The hydrogenphosphonate anion is in a general arrangement and behaves as a tri-O-coordinating ligand.
- Bao, S.-S. and Zheng, L.-M. (2016): Magnetic materials based on 3d metal phosphonates. Coord. Chem. Rev., 319: 63?85.
- Hamchaoui, F., Alonzo, V., Venegas-Yazigi, D., Rebbah, H. and LeFur, E. (2013a): Six novel transition-metal hydrogenphosphonate compounds, with structure related to yavapaiite: Crystal structures and magnetic and thermal properties of AI[MIII(HPO3)2] (A=K, NH4, Rb and M=V, Fe). Solid State Chem., 198: 295?302.
- Metal Phosphonate Chemistry: From Synthesis to Applications, Editors A. Clearfield and K.Demadis, the Royal Society of Chemistry, 2012.
- Mao, J.-G. (2007): Structures and luminescent properties of lanthanide phosphonates. Coord. Chem. Rev., 251: 1493?1520.
- Fernandez-Armas, S., Mesa, J. L., Pizarro, J. L., Pena, A., Chapman, J. P. and Arriortua, M. I. (2004a): Hydrothermal synthesis, crystal structure and spectroscopic and magnetic properties (C2H10N2)[Mn09Co0.91(HPO3)4]. Mat. Res. Bull., 39: 1779?1790.
- Mallouk, T. E., Kim, H. N., Oliver, P. J. and Keller, S. W. (1996): Comprehensive Supramolecular Chemistry, Edited by G. Alberti& T. Bein, Pergamon, New York, 7.
- Cao, G., Hong, H. G. and Mallouk, T. E. (1992): Layered metal phosphates and phosphonates: from crystals to monolayers. Acc. Chem. Res., 25(9): 420?
- Etaiw, S. E. H., Abd El-Aziz, D. M. and Ali, E. A. (2019): Crystal structure, cytotoxicity and biological activity of hydrogen bonded networks based on dimethyltin (IV) and bipodal ligands. J. Organomet. Chem., 894: 43?
- Mao, W., Bao, K., Feng, Y., Wang, Q., Li, J. and Fan, Z. (2015): Synthesis, crystal structure, and fungicidal activity of trioriganotin(IV) 1-methyl-1H-imidazole-4-carboxylates. Main Group Met. Chem., 38: 27?30.
- Devendra, R., Edmonds, N. R. and Sohnel, T. (2015): Organotin carboxylate catalyst in urethane formation in a polar solvent: an experimental and computational study. RSC Adv., 5: 48935?48945.
- Carraher, C. E., Roner, M. R., Frank, J., Slawek, P., Mosca, F., Shahi, K., Moric-Johnson, A. and Miller, L. (2019). Organotin Polymers for the Control of Pancreatic Cancer, OBM Hepatology and Gastroenterology. 3(2):doi:10.21926/obm.hg.1902019.
- Carraher, C., Roner, M., Lynch, M., Moric-Johnson, A., Miller, L., Slawek, P., Mosca, F. and Frank, J. (2018). Organotin poly(ester ethers) from salicylic acid and their ability to inhibit human cancer cell lines, Journal of Clinical Research in Oncology. 1(1):1-11.
- Roner, M., Shahi, K., Battin, A., Barot, G. and Arnold, T. (2014). Organotin Polymers As Chemotherapeutic Agents: Breast and Pancreatic Cancers, Journal of Polymer Materials. 31(1):1-14.
- Troev, K. D. (2006): Chemistry and Application of H-phosphonates, Edited by Elsevier, Chapter 5, pp. 253?
- Mahmoudkhani, A. H. and Langer, V. (2002): Structural correlations in methylphosphonate and hydrogenphosphonate salts: crystal structures of anilinium and ethylenediammoniummethylphosphonates. J. Mol. Struct., 609: 55?
- Fleck, M., Tillmanns, E. and Haussiih, S. (2000): Crystal structure of ethylenediammoniumhydrogenphosphite, (C2N2H8)(H3PO3)2. Z. Kristallogr. NCS, 215(1): 109?
- Paixao, J. A., Matos Beja, A., Silva, M. R. and Martin-Gil, J. (2000): Two anilinium salts: aniliniumhydrogenphosphite and aniliniumhydrogenoxalate hemihydrate. , C56: 1132?1135.
- H?nle, W., Walz, L. and von Schnering, H. G. (1990): EthylenediammoniumHydridotrioxophosphate(2-) [H3NCH2CH2NH3PHO3]. Z. Naturforsch, B45: 1251?1254.
- Ouarsal, R., Lachkar, M., Dusek, M., Albert, E. B., Castell?, J. B. C. and El Bali, B. (2016): Crystal structure of NaCd(H2PO3)3.H2O and spectroscopic study of NaM(H2PO3)3.H2O, M = Mn, Co, Ni, Zn, Mg and Cd. Polyhedron, 106: 132?137.
- Larrea, E. S., Mesa, J. L., Legarra, E., Aguayo, A. T. and Arriortua, M. I. (2016): Crystal structure of K75[FeII3.75FeIII1.25(HPO3)6].0.5H2O, an open-framework iron hydrogenphosphonate with mixed-valent FeII/FeIII ions. ActaCrystallogr., E72: 63?65.
- Berrocal, T., Mesa, J. L., Larre, E. and Arrieta, J. M. (2014): Crystal structure of (NH4)2[FeII5(HPO3)6], a new open-framework hydrogenphosphonate. Acta Crystallogr., E70: 309?311.
- Oh, G. N. and Burns, P. C. (2014): Solid-state actinide acid hydrogenphosphonates from phosphorous acid melts. Solid State Chem., 215: 50?56.
- Hamchaoui, F., Rebbah, H. and LeFur, E. (2013b): Ammonium diphosphitoindate(III).Acta Crystallogr., E69: i21?i22.
- Li, H., Zhang, L., Liu, L., Jiang, T., Yu, Y., Li, G., Huo, Q. and Liu, Y. (2009): Organic template-directed indium hydrogenphosphonate-oxalate hybrid material: Synthesis and characterization of a novel 3D |C6H14N2|[In2(HPO3)3(C2O4)] compound with intersecting channels. Inorg. Chem. Commun., 12: 1020?1023.
- Fernandez-Armas, S., Mesa, J. L., Pizarro, J. L., Lezama, L., Arriortua, M. I. and Rojo, T. (2004b): A new organically templated gallium(III)-doped chromium(III) fluorohydrogenphosphonate, (C2H10N2)[Ga98Cr0.02(HPO3)F3] hydrothermal synthesis, crystal structure and spectroscopic properties. J. Solid State Chem., 177: 765?771.
- Diop, C. A. K., Diop, L. and Russo, U. (1999): (Ph3Sn)2A? (A? = O4C2, O3Se, O3PH, O3AsPh, O3PCH3 and (Ph3Sn)3O4P: Synthesis, M?ssbauer, IR and NMR studies. Main Group Met. Chem., 22(4): 217?220.
- Diop, T., Diop, L., Fall, D. and van der Lee, A. (2012a): Dibutylammoniumbis(hydrogen methylphosphonato-κO)triphenylstannate(IV). ActaCrystallogr., E68: m1284?m1285.
- Driess, M., Merz, K. and Mons?, C. (2003): Synthesis of the first fluoro(phosphanyl)- and diphosphanyl-stannanes and surprising formation of [P(SnMe3)4]+SiF5−. Chem. Commun., 2608-2609.
- Martens, R., du Mont, W.-W., Jeske, J., Jones, P.G., Saak, W. and Pohl, S. (1995): Zumreaktionsverhalten von dialkyl(trichlorsilyl)phosphanen - verglichenmittrimethylsilylphosphanen - gegen?berdichlordimethylstannan: Austauschreaktionen and strukturencyclischerchlorstannylphosphan-dichlordimethylstannan-addukte. J.Organomet.Chem., 501(1-2): 251?261.
- Hanssgen, D., Aldenhoven, H. and Nieger, M. (1990): Einneues PH‐funktionellesDiphosphadistannetan: (tBu2SnPH)2 . Chem. Ber., 123: 1837?1839.
- Diop, T., Diop, L., Kociock-K?hn, G., Molloy, K. C. and Ardisson, J. D. (2013a): Synthesis, spectroscopic characterization and crystal and molecular structures of phenylphosphonato SnR3 (R = Ph, Me) derivatives. Main Group Met. Chem., 36(1-2): 29?34.
- Diop, T., Diop, L., Michaud, F. and Ardisson, J. D. (2013b): Et4N[NO3(SnClPh3)2(SnPh3NO3)]: a trinuclearorganostannate complex and related derivatives. Main Group Met. Chem., 36(3-4): 83?88.
- Diop, T., Diop, L., Da Silva, J. G. and Fall, D. (2012b): Supramolecular architecture in crystalline Bu2NH2(PhPO3H)2SnMe3. Main Group Met. Chem., 35(1-2): 63?65
- Diop, T., Diop, L., Diop, C. A. K., Molloy, K. C. and Kociock-K?hn, G. (2011a): Dicyclohexylammoniumtrimethylbis(hydrogen phenylphosphonato)stannate(IV). Acta. Crystallogr., E67: m1872?
- Diop, T., Diop, L., Molloy, K. C., Kociock-K?hn, G. and Stoeckli-Evans, H. (2011b): catena -Poly[[triphenyltin(IV)]-μ-phenylphosphinato-κ2O:O?]. Acta. Crystallogr., E67: m1674?
- Ribot, F., Sanchez, C., Biesemans, M., Mercier, F. A. G., Martins, J. C., Gielen, M. and Willem, R. (2001): Di-n Butyltin methyl and phenylphosphonates, Organometallics,20: 2593?2603.
- Adair, B., Natarajan, S. and Cheetham, A. K. (1998):Synthesis and structural characterization of a novel tin(II) phosphonate, Sn2(O3PCH3)(C2O4). Journal of Materials Chemistry, 8(6): 1477?1479.
- Chandrasekhar, V., Baskar, V. and Vittal, J. J. (2003): A New Structural Form of Tin in a Double O-Capped Cluster. J. Am. Chem. Soc., 125: 2392?
- Chandrasekhar, V., Baskar, V., Gopal, K. and Vittal, J. J. (2005): Organooxotin Cages, {[(n-BuSn)3(?3-O)(OC6H4-4-X)3]2[HPO3]4}, X ) H, Cl, Br, and I, in Double O-Capped Structures: Halogen-Bonding-Mediated Supramolecular Formation.Organometallics, 24: 4926?
- Mairychova, B., Stepnicka, P., Ruzicka, A., Dostal, L. and Jambor, R. (2014): Reactivity Studies on an Intramolecularly Coordinated Organotin(IV). Organometallics, 33(12): 3021?
- Bou?lam, M., Willem, R., Biesemans, M., Mahieu, B., Meunier-Piret, J. and Gielen, M. (1991): Synthesis, characterization and in vitro antitumor activity of diorganotin derivatives of substituted salicylic acids and analogs. Crystal structure of Bis(5-methoxysalicylato-di-n-butyltin)oxide. Main Group Met. Chem., 14: 41?56.
- Nonius (2003). COLLECT. Nonius BV, Delft, The netherlands.
- Otwinowski, Z. and Minor, W. (1997): Methods in Enzymology. Macromolecular Crystallography, Part A, Edited by C. W. Carter Jr & R. M. Sweet, New York: Academic Press, 276: pp. 307?326.
- Sheldrick, G. M. (2008): A short history of?SHELX. ActaCrystallogr., A64: 112?122.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. and Puschmann, H. (2009): OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr., 42: 339?341.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. and Wood, P. A. (2008): Mercury CSD 2.0 ? new features for the visualization and investigation of crystal structures. J. Appl. Crystallogr., 41: 466?470.
- Apex2, Crystallographic Software, Suite, Bruker AXS Inc., Madison, Wisconsin (USA) 2013.
- Saint (version 8.35A-2013), Area Detector Integration Software, Bruker AXS Inc., Madison, Wisconsin (USA) 2013.
- Krause, L., Herbst-Irmer, R., Sheldrick, G. M. and Stalke, D. (2015): Comparison of silver and molybdenum microfocus X-ray sources for single-crystal structure determination. Appl. Crystallogr., 48: 3?10.
- Nakamoto, K. (1997): Infrared and Raman Spectra of Inorganic and Coordination Compounds, Edited by John Wiley and Sons, 5th Edition.
- Bancroft, G. M. and Platt, R. H. (1972): M?ssbauer spectra of inorganic compounds: Bonding and structure, Advances in Inorganic Chemistry and Radiochemistry, Edited by H. J. Emeleus and A. G. Sharpe, Academic Press, New York, 15, pp. 59?258.
- Parish, R. V. (1984): "Structure and bonding in tin compounds" in "Mossbauer spectroscopy applied to inorganic chemistry", G. L. Lond Ed., Plenum Press, New York, 1, pp. 530.
- Diop, M. B., Diop, L., Plasseraud, L. and Maris, T. (2015): Crystal structure of 2-methyl-1H-imidazol-3-ium aquatrichlorido(oxalato-κ2O,O?)stannate(IV). ActaCrystallogr., E71: 520?
[Mouhamadou Birame Diop, Mouhamadou Sembene Boye, Aminata Diasse - Sarr, Libasse Diop, Philippe Guionneau and Thierry Maris. (2019); TRIORGANOTIN PHOSPHONATES POLYMERIC CHAINS - SYNTHESIS, INFRARED, MOSSBAUER AND SINGLE CRYSTAL CHARACTERIZATION:THE FIRST ORGANOTIN(IV) PH2- BRIDGED. Int. J. of Adv. Res. 7 (Aug). 266-278] (ISSN 2320-5407). www.journalijar.com
Laboratoire de Chimie Minérale et Analytique (LA.CHI.MI.A.), Département de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Sénégal