22Dec 2018

SIMULATION MODEL OF RISK TREATMENT FOR CANESUGAR PRODUCTION PROCESS WITH A SYSTEM DYNAMIC APPROACH.

  • Center of Technology Specific Region and inovation system, Agency for The Assessment and Application of Technology (BPPT), Gd. 720 Kawasan Puspiptek Serpong, Tangerang Selatan, Indonesia ? 15314.
  • Department of Agroindustrial Technology, Bogor Agricultural University, Bogor, West Java, Indonesia 16002.
  • Center of Technology Audit System- Agency for The Assessment and Application of Technology (BPPT), Gd. 720 Kawasan Puspiptek Serpong, Tangerang Selatan, Indonesia ? 15314.
  • Abstract
  • Keywords
  • References
  • Cite This Article as
  • Corresponding Author

The risks within the continuous production process of perishable agricultural products are inherently complex and dynamic. Risks of raw material supply activities affect the activity itself and its subsequent activities. Analysis results of interpretive structural modeling (ISM) on risk measurement of sugar cane production processes indicate that risk management in sugarcane raw material supply will support other risk handling measures. The simulation results with a system dynamics approach show that risk treatment in the sugarcane supply activities, namely overcoming lack of harvesting labor by increasing semi-mechanical harvesting (SM) and level of sugarcane cleanliness by tightening the implementation of standard operational procedure (SOP), has positive changes in sugarcane supply performance, the performance of milling, processing and generator processes such as daily milling average, SHS sugar production, yield, amount of crystal, and electricity production.


  1. (2018). Perkembangan produksi musim giling tahun 2017 Jakarta: AGI Retrieved from http://asosiasigulaindonesia.org/wp-content/uploads/2018/.
  2. Bromiley, P., McShane, M., Nair, A., & Rustambekov, E. (2015). Enterprise Risk Management: Review, Critique, and Research Directions. Long Range Planning, 48(4). doi: 10.1016/j.lrp.2014.07.005
  3. Campuzano, F., & Mula, J. (2011). Supply Chain Simulation A System Dynamics Approach for Improving Performance. London Springer.
  4. Dibyoseputro, M. A. B. (2012). Rancang Bangun Sistem Dinamis Pengambilan Keputusan Kompleks Pengembangan Agroindustri Gula Tebu. (Doktor Desertasi), IPB, Bogor.
  5. (2012). Ilmu sistem: meningkatkan mutu dan efektifitas manajemen jilid satu. Surabaya: Guna Widya.
  6. Haryono, Hendriadi, A., Sembiring, H., Unadi, A., & Nurjaman. (2012). Kebijakan Pencapaian Swasembada Dan Swasembada Berkelanjutan Lima Komoditas Utama Pertanian Melalui Pendekatan Sistem Dinamik. Jakarta: BP3 - Kementan.
  7. Minami, N. A., Madnick, S., & Rhodes, D. (2008, 12‐15 November 2008). A Systems Approach to Risk Management. Paper presented at the American Society For Engineering Management Conference Proceedings.
  8. Nasirzadeh, F., Afshar, A., Khanzadi, M., & Howick, S. (2008). Integrating system dynamics and fuzzy logic modelling for construction risk management. Construction Management and Economics, 26(11), 1197-1212. doi: 10.1080/01446190802459924
  9. Nikolaou, I., Evangelinos, K., & Leal Filho, W. (2014). A system dynamic approach for exploring the effects of climate change risks on firms' economic performance. Journal of Cleaner Production. doi: 10.1016/j.jclepro.2014.09.086
  10. Patill, G. V., G.S.Yarnal., & V.S.Puranik. (2008). System Dynamics Modelling Approach For Energy Management in a Sugar Industry. Journal of Contemporary Research in Management, 3.
  11. Rohmatulloh, Marimin, Machfud, & Nasution, M. Z. (2009). Kajian Sistem Pengukuran Kinerja Pabrik Gula (Studi Kasus, Pg Subang Jawa Barat). Jurna Manajemen & Agribisnis, 6.
  12. Rohmatulloh, Marimin, Machfud, & Nasution, M. Z. (2011). Pengembangan Model Sistem Dinamik Kinerja Pabrik Gula. Paper presented at the 2nd Workshop on System Modelling for Policy Development : Rehearsing Strategic Initiatives, Jakarta.
  13. Sargent, R. G. (2012). Verification and validation of simulation models. Journal of Simulation, 7(1), 12-24. doi: 10.1057/jos.2012.20
  14. Sidola, A., Kumar, P., & Kumar, D. (2011, 27-30 June 2011). System dynamic methodological approach for design and analysis of risk in supply chain. Paper presented at the First International Technology Management Conference.
  15. Sriwana, I. K. (2006). Pemodelan Sistem untuk Peningkatan Produksi Gula Tebu PG Rajawali II Unit PG Subang. (Master Thesis), IPB, Bogor.
  16. Sterman, J. D. (2000). Business Dynamics: Systems Thinking and Modeling for a Complex World (1 ed.). New York: McGraw-Hill Education.
  17. (2017). Analisis keragaman parameter penentu rendemen gula kristal putih pada pabrik gula bumn. MIPI, 11, 1 - 10.
  18. Suripto, Machfud, Romli, M., & Rosidi, A. (2018). Risk Analysis and Mitigation Strategy for Sugar Cane Production Processes (Case Study: X Sugar Cane Factory?West Java). Paper presented at the IOP Conference Series: Earth and Environmental Science.
  19. Wan, J., & Liu, Y. (2014). A System Dynamics Model for Risk Analysis during Project Construction Process. Open Journal of Social Sciences, 02(06), 451-454. doi: 10.4236/jss.2014.26052.

[Suripto, Machfud, M. Romli and AHY Rosidi. (2018); SIMULATION MODEL OF RISK TREATMENT FOR CANESUGAR PRODUCTION PROCESS WITH A SYSTEM DYNAMIC APPROACH. Int. J. of Adv. Res. 6 (Dec). 1357-1366] (ISSN 2320-5407). www.journalijar.com


Suripto
Center of Technology Specific Region and inovation system, Agency For The Assessment And Application of Technology (BPPT), Komplek Puspiptek, South Tangerang, Banten, Indonesia - 15314

DOI:


Article DOI: 10.21474/IJAR01/8277      
DOI URL: https://dx.doi.org/10.21474/IJAR01/8277