12Dec 2018

EFFECT OF TAURINE ON DEPRESSION ASSOCIATED WITH OBESITY AND STREPTOZOTOCIN INDUCED DIABETES IN RATS.

  • Department of Medical Physiology, Faculty of Medicine, Tanta University, Egypt.
  • Abstract
  • Keywords
  • References
  • Cite This Article as
  • Corresponding Author

Aim of the Work: to investigate the effect of taurine on depression associated with obesity and streptozotocin induced diabetes in rats. Methods: 60 male rats were divided into six groups (10 rats each): (I:Control group) received saline intraperitoneally once a day for 30 days, (II: Taurine group) received taurine (100 mg/kg) intraperitoneally once a day for 30 days, (III: Diabetic group) received a single dose of streptozotocin (50 mg/kg) intraperitonealy, (IV: Obese group) were fed with high fatty diet for 8 weeks, (V:Taurine treated diabetic group) received taurine (100 mg/kg) intraperitoneally once a day for 30 days after induction of diabetes, (VI: Taurine treated obese group) received taurine (100 mg/kg) intraperitoneally once a day for 30 days after induction of obesity. Results:Taurine treated groups showed significant decrease in serum glucose, brain malondialdehyede (MDA), tumor necrosis factor alpha (TNf-α) and immobility time of forced swim test with significant increase in brain catalase, brain derived neurotropic factor (BDNF), serotonin and numbers of squares crossed in open field test. In addition, there is significant increase in serum insulin and body mass index with insignificant changes in insulin resistance and serum adiponectin level in taurine treated diabetic group. However, there is significant decrease in serum insulin, insulin resistance with significant increase in serum adiponectin, but insignificant change in body mass index in taurine treated obese group. Conclusion:Antidepressent effect of taurine has can be explained by its hypoglycaemic, antioxidant, anti-inflammatory and neurotrophic effects.


  1. Aebi H.B. in E. (1984) : Catalase in vitro. inOxyg. Radicals Biol. Syst., 121?126.
  2. Aguilar-Valles A., Inoue W., Rummel C. and Luheshi G.N. (2015) : Obesity, adipokines and neuroinflammation. Neuropharmacology, 96, 124?134.
  3. Arnold S.E., Arvanitakis Z., Macauley-Rambach S.L., Koenig A.M., Wang H.-Y., Ahima R.S., et al. (2018) :Brain insulin resistance in type 2 diabetes and Alzheimer disease: concepts and conundrums. Nat. Rev. Neurol., 14(3), 168?181.
  4. Autry A.E. and Monteggia L.M. (2012) : Brain-Derived Neurotrophic Factor and Neuropsychiatric Disorders. Pharmacol. Rev., 64(2), 238? 258.
  5. Bajaj S., Agarwal S.K., Varma A. and Singh V.K. (2012) : Association of depression and its relation with complications in newly diagnosed type 2 diabetes. Indian J. Endocrinol. Metab., 16(5), 759?763.
  6. Bajpai A., Verma A.K., Srivastava M. and Srivastava R. (2014) : Oxidative Stress and Major Depression. J. Clin. Diagn. Res., 8(12), CC04-CC07.
  7. Baker-Herman T.L., Fuller D.D., Bavis R.W., Zabka A.G., Golder F.J., Doperalski N.J., et al. (2004): BDNF is necessary and sufficient for spinal respiratory plasticity following intermittent hypoxia. Nat. Neurosci., 7(1), 48?55.
  8. Brouckaert P., Libert C., Everaerdt B., Takahashi N., Cauwels A. and Fiers W. (1993) :Tumor necrosis factor, its receptors and the connection with interleukin 1 and interleukin 6. Immunobiology, 187(3?5), 317?329.
  9. Caletti G., Almeida F.B., Agnes G., Nin M.S., Barros H.M. and Gomez R. (2015) :Antidepressant dose of taurine increases mRNA expression of GABAA receptor alpha2 subunit and BDNF in the hippocampus of diabetic rats. Behav. Brain Res., 283, 11?15.
  10. Caletti G., Herrmann A.P., Pulcinelli R.R., Steffens L., Moras A.M., Vianna P., et al. (2017) :Taurine counteracts the neurotoxic effects of streptozotocin-induced diabetes in Amino Acids, 50(1):95-104.
  11. Castagne V., Moser P., Roux S. and Porsolt R.D. (2011) :Rodent models of depression: forced swim and tail suspension behavioral despair tests in rats and mice. Curr. Protoc. Neurosci., Chapter 8, Unit 8.10A, 1?14.
  12. Chen W., Guo J., Zhang Y. and Zhang J. (2016) :The beneficial effects of taurine in preventing metabolic syndrome. Food Funct., 7(4), 1849?1863.
  13. Detka J., Kurek A., Basta-Kaim A., Kubera M., Laso?z W. and Budziszewska B. (2013) :Neuroendocrine link between stress, depression and diabetes. Pharmacol. Reports, 65(6), 1591?1600.
  14. Esfahani M., Movahedian A., Baranchi M. and Goodarzi M.T. (2015) :Adiponectin: an adipokine with protective features against metabolic syndrome. Iran. J. Basic Med. Sci., 18(5), 430?442.
  15. Felger J.C. and Lotrich F.E. (2013) :Inflammatory cytokines in depression: neurobiological mechanisms and therapeutic Neuroscience, 246, 199?229.
  16. Furukawa S., Fujita T., Shimabukuro M., Iwaki M., Yamada Y., Nakajima Y., et al. (2017) : Increased oxidative stress in obesity and its impact on metabolic syndrome. J. Clin. Invest., 114(12), 1752?1761.
  17. Gaspar J.M., Baptista F.I., Macedo M.P. and Ambr?sio A.F. (2016) :Inside the Diabetic Brain: Role of Different Players Involved in Cognitive Decline. ACS Chem. Neurosci., 7(2), 131?142.
  18. Haase J. and Brown E. (2014) :Integrating the monoamine, neurotrophin and cytokine hypotheses of depression - a central role for the serotonin transporter?. Pharmacol. Ther., 147, 1?11.
  19. Henry R.J. (1966) : Clinical chemistry : principles and techniques. J Clin. Pathol., 19(2): 205.
  20. Ikubo N., Saito M., Tsounapi P., Dimitriadis F., Ohmasa F., Inoue S., et al. (2011) :Protective effect of taurine on diabetic rat endothelial dysfunction. Biomed. Res., 32(3), 187?193.
  21. Jacobowitz D.M. and Richardson J.S. (1978) :Method for the rapid determination of norepinephrine, dopamine, and serotonin in the same brain region. Pharmacol. Biochem. Behav., 8(5), 515?519.
  22. Jong C.J., Azuma J. and Schaffer S. (2012) :Mechanism underlying the antioxidant activity of taurine: prevention of mitochondrial oxidant production. Amino Acids, 42(6), 2223?2232.
  23. Kapczinski F., Frey B.N., Andreazza A.C., Kauer-Sant?Anna M., Cunha A.B.M. and Post R.M. (2008) :Increased oxidative stress as a mechanism for decreased BDNF levels in acute manic episodes. Rev. Bras. Psiquiatr., 30(3), 243?245.
  24. Kearns B., Rafia R., Leaviss J., Preston L., Brazier J.E., Palmer S., et al. (2017) :The cost-effectiveness of changes to the care pathway used to identify depression and provide treatment amongst people with diabetes in England: a model-based economic evaluation. BMC Health Serv. Res., 17(78), 1-10.
  25. Kim H.K., Nunes P.V., Oliveira K.C., Young L.T. and Lafer B. (2016) :Neuropathological relationship between major depression and dementia: A hypothetical model and review. Prog. Neuro-Psychopharmacology Biol. Psychiatry, 67, 51?57.
  26. Kleinridders A., Cai W., Cappellucci L., Ghazarian A., Collins W.R., Vienberg S.G., et al. (2015) : Insulin resistance in brain alters dopamine turnover and causes behavioral disorders. Proc. Natl. Acad. Sci. U. S. A., 112(11), 3463?3468.
  27. De la Puerta C., Arrieta F.J., Balsa J.A., Botella-Carretero J.I., Zamarron I. and Vazquez C. (2010):Taurine and glucose metabolism: a review. Nutr. Hosp., 25(6), 910?919.
  28. Lang U.E. and Borgwardt S. (2013) :Molecular Mechanisms of Depression: Perspectives on New Treatment Strategies. Cell. Physiol. Biochem., 31(6), 761?777.
  29. Liu X., Piao F. and Li Y. (2013) :Protective effect of taurine on the decreased biogenic amine neurotransmitter levels in the brain of mice exposed to arsenic. Adv. Exp. Med. Biol., 776, 277?287.
  30. Ma K., Zhang H. and Baloch Z. (2016) :Pathogenetic and therapeutic applications of tumor necrosis factor-α (TNF-α) in major depressive disorder: A systematic review. Int. J. Mol. Sci., 17(5), 1-21.
  31. Manley S.E., Luzio S.D., Stratton I.M., Wallace T.M. and Clark P.M.S. (2008) :Preanalytical, analytical, and computational factors affect homeostasis model assessment estimates. Diabetes Care, 31(9), 1877?1883.
  32. Matsuzawa-Nagata N., Takamura T., Ando H., Nakamura S., Kurita S., Misu H., et al. (2008) : Increased oxidative stress precedes the onset of high-fat diet-induced insulin resistance and obesity. Metabolism., 57(8), 1071?1077.
  33. Menzie J., Pan C., Prentice H. and Wu J.-Y. (2014) :Taurine and central nervous system disorders. Amino Acids, 46(1), 31?46.
  34. deMorais H., de Souza C.P., da Silva L.M., Ferreira D.M., Werner M.F., Andreatini R., et al. (2014):Increased oxidative stress in prefrontal cortex and hippocampus is related to depressive-like behavior in streptozotocin-diabetic rats. Behav. Brain Res., 258, 52?64.
  35. Murakami S. (2015) :Role of taurine in the pathogenesis of obesity. Mol. Nutr. Food Res., 59(7), 1353?1363.
  36. Myint A.M., Schwarz M.J. and M?ller N. (2012) :The role of the kynurenine metabolism in major depression. J. Neural Transm., 119(2), 245?251.
  37. Nandhini A.T., Thirunavukkarasu V. and Anuradha C. V (2005) :Taurine modifies insulin signaling enzymes in the fructose-fed insulin resistant Diabetes Metab., 31(4), 337?344.
  38. Novelli E.L., Diniz Y.S., Galhardi C.M., Ebaid G.M., Rodrigues H.G., Mani F., et al. (2007) : Anthropometrical parameters and markers of obesity in rats. Lab. Anim., 41(1), 111?119.
  39. Ohkawa H., Ohishi N. and Yagi K. (1979) :Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem., 95(2), 351?358.
  40. Otte C., Gold S.M., Penninx B.W., Pariante C.M., Etkin A., Fava M., et al. (2016) : Major depressive disorder. Nat. Rev. Dis. Prim., 2, 1-20.
  41. Pandya K.G., Patel M.R. and Lau-Cam C.A. (2010) :Comparative study of the binding characteristics to and inhibitory potencies towards PARP and in vivo antidiabetogenic potencies of taurine, 3-aminobenzamide and nicotinamide. J. Biomed. Sci., 17 (Suppl 1), 1-15.
  42. Papazoglou I.K., Jean A., Gertler A., Taouis M. and Vacher C.M. (2015) :Hippocampal GSK3β as a Molecular Link Between Obesity and Depression. Mol. Neurobiol., 52(1), 363?374.
  43. Patke A., Tripathi R., Patke V.G., Sonawane D. and Rege N. (2015) :Antidepressant activity of Simvastatin in behavioral models of depression in rats. Int. J. Res. Med. Sci., 3(7), 1666?1671.
  44. Porsolt R.D., Anton G., Blavet N. and Jalfre M. (1978) :Behavioural despair in rats: a new model sensitive to antidepressant treatments. Eur. J. Pharmacol., 47(4), 379?391.
  45. Quinn C.C., Swasey K.K., Crabbe J.C., Shardell M.D., Terrin M.L., Barr E.A., et al. (2017) :The Impact of a Mobile Diabetes Health Intervention on Diabetes Distress and Depression Among Adults: Secondary Analysis of a Cluster Randomized Controlled Trial. JMIR mHealthuHealth, 5(12), 1-27.
  46. Ramos A., Berton O., Morm?de P. and Chaouloff F. (1997) :A multiple-test study of anxiety-related behaviours in six inbred rat strains. Behav. Brain Res., 85(1), 57?69.
  47. Redivo D.D., Schreiber A.K., Adami E.R., Ribeiro D.E., Joca S.R.L., Zanoveli J.M., et al. (2016) : Effect of omega-3 polyunsaturated fatty acid treatment over mechanical allodynia and depressive-like behavior associated with experimental diabetes. Behav. Brain Res., 298, 57?64.
  48. Salze G.P. and Davis D.A. (2015) :Taurine: a critical nutrient for future fish feeds. Aquaculture, 437, 215?229.
  49. Samson F., Colip F. & Patterson J. (1957): Procedure for the Use of Sodium Pentobarbital (Nembutal?)Anesthesia in Classroom Experiments with Rats. Transactions of the Kansas Academy of Science, (1903), 425-428
  50. Santiago R.M., Barbieiro J., Lima M.M.S., Dombrowski P.A., Andreatini R. and Vital M.A.B.F. (2010) :Depressive-like behaviors alterations induced by intranigral MPTP, 6-OHDA, LPS and rotenone models of Parkinson?s disease are predominantly associated with serotonin and dopamine. Prog. Neuropsychopharmacol. Biol. Psychiatry, 34(6), 1104?1114.
  51. Sarris J. (2017) :Clinical use of nutraceuticals in the adjunctive treatment of depression in mood Australas. Psychiatry, 25(4), 369?372.
  52. Schaffer S.W., Azuma J. and Mozaffari M. (2009) :Role of antioxidant activity of taurine in diabetes. Can. J. Physiol. Pharmacol., 87(2), 91?99.
  53. Schuch F.B., Deslandes A.C., Stubbs B., Gosmann N.P., Silva C.T.B. da and Fleck M.P. de A. (2016) :Neurobiological effects of exercise on major depressive disorder: A systematic review. Neurosci. Biobehav. Rev., 61, 1?11.
  54. Sharma S. and Fulton S. (2013) :Diet-induced obesity promotes depressive-like behaviour that is associated with neural adaptations in brain reward circuitry. Int. J. Obes., 37(3), 382?389.
  55. Shi Y.C., Liao J.W. and Pan T.M. (2011) :Antihypertriglyceridemia and anti-inflammatory activities of monascus-fermented dioscorea in streptozotocin-induced diabetic rats. Exp. Diabetes Res., 2011(ID 710635),1-11.
  56. Steiner D.F. and Oyer P.E. (1967) :The biosynthesis of insulin and a probable precursor of insulin by a human islet cell adenoma. Proc. Natl. Acad. Sci. U. S. A., 57(2), 473?480.
  57. Sweeney P., O?Hara K., Xu Z. and Yang Y. (2017) :HFD-induced energy states-dependent bidirectional control of anxiety levels in mice. Int. J. Obes. (Lond)., 41(8), 1237?1245.
  58. Toyoda A. and Iio W. (2013) :Antidepressant-like effect of chronic taurine administration and its hippocampal signal transduction in rats. Adv. Exp. Med. Biol., 775, 29?43.
  59. Vavakova M., Durackova Z. and Trebaticka J. (2015) :Markers of Oxidative Stress and Neuroprogression in Depression Disorder. Oxid. Med. Cell. Longev., 2015(ID 898393),1-12.
  60. Versteeg R.I., Koopman K.E., Booij J., Ackermans M.T., Unmehopa U.A., Fliers E., et al. (2017) :Serotonin Transporter Binding in the Diencephalon Is Reduced in Insulin-Resistant Obese Humans. Neuroendocrinology, 105(2), 141?149.
  61. Vettorazzi J.F., Ribeiro R.A., Santos-Silva J.C., Borck P.C., Batista T.M., Nardelli T.R., et al. (2014) :Taurine supplementation increases KATP channel protein content, improving Ca2+ handling and insulin secretion in islets from malnourished mice fed on a high-fat diet. Amino Acids, 46(9), 2123- 36.
  62. Whirley B.K. and Einat H. (2008) :Taurine trials in animal models offer no support for anxiolytic, antidepressant or stimulant effects. Isr. J. Psychiatry Relat. Sci., 45(1), 11?18.
  63. Wu G.F., Ren S., Tang R.-Y., Xu C., Zhou J.Q., Lin S.M., et al. (2017) : Antidepressant effect of taurine in chronic unpredictable mild stress-induced depressive rats. Sci. Rep., 7(4989),1-14.
  64. Xia Z., Wei H., Duan J., Zhou T., Yang Z. and Xu F. (2016) :Chronic unpredicted mild stress-induced depression alter saxagliptin pharmacokinetics and CYP450 activity in GK rats. Peer J, 4, 1-15.
  65. Yang R.L., li wu, Shi Y.H. and Le G. (2008) Lipoic acid prevents high-fat diet-induced dyslipidemia and oxidative stress: A microarray analysis Nutrition. Nutrition, 24(6), 582?588.
  66. Ye R. and Scherer P.E. (2013) :Adiponectin, driver or passenger on the road to insulin sensitivity?. Mol. Metab., 2(3), 133?141.
  67. Yokota T., Oritani K., Takahashi I., Ishikawa J., Matsuyama A., Ouchi N., et al. (2000) :Adiponectin, a new member of the family of soluble defense collagens, negatively regulates the growth of myelomonocytic progenitors and the functions of macrophages. Blood, 96(5), 1723?1732.
  68. Zanoveli J.M., Morais H., Dias I.C., Schreiber A.K., Souza C.P. and Cunha J.M. (2016) :Depression Associated with Diabetes: From Pathophysiology to Treatment. Curr. Diabetes Rev., 12(3), 165?178.

[Maram Mohamed El Tabaa, Nahid Mohamed El Fateh Tahoon, Mahmoud Abd El Hamied El Gharib and Mohamed Mohamed Mady. (2018); EFFECT OF TAURINE ON DEPRESSION ASSOCIATED WITH OBESITY AND STREPTOZOTOCIN INDUCED DIABETES IN RATS. Int. J. of Adv. Res. 6 (Dec). 714-725] (ISSN 2320-5407). www.journalijar.com


Maram Mohamed El Tabaa
Department of medical physiology,Faculty of Medicine,Tanta University,Egypt

DOI:


Article DOI: 10.21474/IJAR01/8191      
DOI URL: https://dx.doi.org/10.21474/IJAR01/8191