08Dec 2018

POTENTIAL CHLORPYRIFOS AND MALATHION DEGRADING BACTERIAL ISOLATION, BIOCHEMICAL CHARACTERIZATION AND GROWTH KINETICS STUDIES.

  • Department of Botany, College of Science and Technology, Andhra University, Visakhapatnam- 530003.
  • Abstract
  • Keywords
  • References
  • Cite This Article as
  • Corresponding Author

Soil bacterium capable of utilizing organophosphate based pesticides as sole carbon source was isolated by selective enrichment on mineral medium containing chlorpyrifos and malathion individually. A total eleven bacterial isolates were isolated from five different agriculture soils. The pesticide tolerance test revealed that MGPD-02 was high potential isolate against chlorpyrifos and malation, biochemical characteristics revealed that MGPD-02 was gram negative bacilli citrate, nitrate reductase, MR and VP positive bacteria. Growth studies showed that MGPD-02 utilized chlorpyrifos to grow in Luria-Bertani broth containing different concentrations of chlorpyrifos at 50 -500 ppm. However, the optimum concentration that supported bacterial growth over 24 h was found to be 50 -200 ppm. Further concentrations were proved to be decreasing their bacterial growth and become completely lethal at 500 ppm for both chlorpyrifos and malathion.


  1. Brice?no, G., Fuentes, M.S., Palma, G., Jorquera, M.A., Amoroso, M.J. and Dieza, M.C. (2012): Chlorpyrifos biodegradation and 3,5,6-trichloro-2-pyridinol production by Actinobacteria isolated from soil. J. BiodeteriorBiodegrad., 73: 1?7.
  2. Fang, H., Yu, Y., Chu, X., Wang, X., Yang, X. and Yu, J. (2009): Degradation of chlorpyrifos in laboratory soil and its impact on soilmicrobial functional diversity. J Environ. Sci., 21:380?386.
  3. Singh, B.K., Walker, A., Morgan, J.A., Wright, D.J.(2014): Biodegradation ofchlorpyrifos by Enterobacter strain B-14 and its use inbioremediation of contaminated soils. Appl Environ Microbiol., 70:4855?4863.
  4. Jabeen, H., Iqbal, S., Anwar, S.(2015): Biodegradation of chlorpyrifosand 3,5,6-trichloro-2-pyridinol by a novel rhizobial strain Mesorhizobiumsp HN3. Water Environ J., 29:151?160.
  5. Gonz?lez-Alzaga, B., Lacasa?a, M., Aguilar-Gardu?o, C., Rodr?guez-Barranco, M., Ballester, F., Rebagliato, M., Hern?ndez, A. F. (2014): A systematic review of neurodevelopmental effects of prenatal and postnatal organophosphate pesticide exposure. Toxicology letters.,230(2):104-21.
  6. Saulsbury, M.D., Heyliger, S.O., Wang, K., Round, D. (2008): Characterization of chlorpyrifos-induced apoptosis inplacental cells. J. Toxicology., 244: 98?110.
  7. Menon, P., Gopal, M., Prasad, R.(2004): Influence of two insecticides, chlorpyrifos and quinalphos, on arginine ammonificationandmineralizable nitrogen in two tropical soil types. AgricFood Chem., 7370?7376.
  8. Anwar, S., Liaquat, F., Khan, Q. M., Khalid, Z. M. (2009): IqbalS.Biodegradation of chlorpyrifos and its hydrolysis product3,5,6-trichloro-2-pyridinol by Bacillus pumilusstrain C2A1. Hazard Mater., 168: 400?405.
  9. RasulChaudhary, G., Ali, A. N., Wheeler, W. B. (1988): Isolation of a methyl parathion-degrading Pseudomonas that possess DNA homologous to the opdgene from a Flovobacteriumsp. Appl. Environ. Microbiol., 54: 288- 293.
  10. Karpouzas, D.G., Morgan, J. A., Walker, A. (2000): Isolation and characterization of 23 carbofuron-degrading bacteria from soils from distant geographical areas. Lett. Appl. Microbiol., 31:353-358.
  11. Haugland, R. A., Schlemm, D. J., Lynos, R. P., Sferra, P. R., Chakrabarty, A. M. (1990): Degradation of chlorinated phenoxy acetate herbicides 2, 4- dicholrophenoxy acetic acid and 2, 4, 5- trichlorophenoxy acetic acid by pure and mixed culture. Appl. Environ. Microbiol., 50:1357-1362.
  12. Mansi, E. M. T. E. L., Bryce, C. F. A. (2002): Fermentation microbiology and Biotechnology: British library cataloguing in Publications. pp. 49-63.
  13. Maria, K., Graciela, C., Zauscher, F. (2002): Biodegradation of two commercial herbicides (Gramoxone and Matancha) by the bacteria Pseudomonas putida. E. J. Env. Biotech., 5(2): 182-
  14. Smith-Geer, L. L., Adkins, A. (1996): Isolation and characterization of soil microorganisms capable of utilizing the herbicide dichloro-p-methyl as a source of carbon and energy. Can. J. Microbiol., 42:221-226.
  15. Lee, K.S., Metcalf, W.W., Wanner, B. L. (1992): Evidence for two phosphonatedegradative pathways in Enterobacteraerogenes. J. Bacteriol., 174(19) :2501-2510.
  16. Dick, R. E., Quinn, J. P. (1995): Glyphosate-degrading isolates from environmental samples: ccurrence and pathways of degradation. Appl. Microbiol. Biotechnol., 43(8): 545-550.
  17. Sethunathan, N. N., Yoshida, T. (1973): A Flavobacteriumthat degrades Diazinon and parathion. Can. J. Microbiol., 19:873-875.
  18. Racke, K. D., Coats, J. R. (1990): Pesticides in soil microbial ecosystems. Am. Chem. Soc. Symp. Ser., 426:1-12.
  19. Jilani, S., Altaf, Khan M. (2004): Isolation, characterization and growth response of pesticide degrading bacteria. J. Biol. Sci., 4(1):15-20.
  20. Mulbry, W. W., Del Valle, D. L., Karns, J. S. (1996): Biodegradation of the organophosphorous insecticide coumaphos in highly contaminated soils and in liquid wastes. Pestic. Sci., 48: 149-155.
  21. Struthers, J.K., Jayachandran, K., Moorman, T. B. (1998): Biodegradation of atrazine by Agrobacterium radiobacterJ14a and use of this strain in bioremediation of contaminated soil. Appl. Environ. Microbiol., 64: 3368-3375.
  22. Tamer, M.A., ThabitMedhat, A.H., Naggar, E.L., (2013): Malathion degradation by soil isolated bacteria and detection of degradation products by GC-MS., 3(5): 220- 230.

[B.Niranjana Reddi and D.Sandya Deepika. (2018); POTENTIAL CHLORPYRIFOS AND MALATHION DEGRADING BACTERIAL ISOLATION, BIOCHEMICAL CHARACTERIZATION AND GROWTH KINETICS STUDIES. Int. J. of Adv. Res. 6 (Dec). 580-586] (ISSN 2320-5407). www.journalijar.com


B NIRANJANA REDDI
Department of Botany, College of Science and Technology, Andhra University, Visakhapatnam- 530003.

DOI:


Article DOI: 10.21474/IJAR01/8176      
DOI URL: https://dx.doi.org/10.21474/IJAR01/8176