MICROFLORA OF SOIL: A REVIEW.
- Department of Biotechnology, Guru Nanak Girls college, Model Town, Ludhiana.
- Department of Microbiology,Guru Nanak Girls college, Model Town, Ludhiana.
- Abstract
- Keywords
- References
- Cite This Article as
- Corresponding Author
Microflora of soil is an integral part of soil Organic Matter. Soil bacteria and fungi are the start of the soil food web that supports other organisms. Bacteria constitute the most abundant groups of microorganisms in soil and the fungal population of soils constitutes a very heterogenous group of organisms. The bacterial genera Nocardia, Streptomyces and Micromonospora belong to order actinomycetes (aerobic and heterotrophic) are capable of degrading many complex organic substances and consequently play an important role in building soil fertility. The soil food web is interconnected matrix of invisible (fungi, bacteria, protozoa, nematodes) and visible (earthworms, beetles, arthopods) creatures that have a whole host of functions which creates a healthy ecosystem for plant growth. Various microorganisms were isolated from different soil samples collected. Thus the population of total bacteria in rhizosphere was reported to be highest as compared as to non-rhizosphere. The majority of the bacteria were reported to be Bacillus and Micrococcus Species. The total fungal population densities were also decreased in non-rhizosphere while the highest fungal population was observed in rhizosphere. The majority of fungi were reported to be Aspergillus niger, Aspergillus fumigatus, Penicillum species and Fusarium species. A number of diazotrophs bacteria have abilities to fix Nitrogen, some strains may relieve deficiencies where there is an inadequate application of N fertilizers. Many heterotrophic bacteria live in the soil and fix significant levels of Nitrogen including Azotobacter, Azospirillum and Rhizobium. N fixing microorganisms are globally noteworthy due to the fact as they provide only natural biological source of fixed N in the biosphere. The population count of Azotobacter was also more in rhizosphere than non-rhizosphere sites.
- Afzal, A.; Ashraf, M.; Asad, S.A. and Farooq, M. (2005). Effect of phosphate solubilizing microorganisms of Phosphorus uptake, yield and yield traits of wheat (Triticum aestivum L.) in rain fed area. International Journal of Agriculture and Biology, 7(2):207-209.
- Agnihotrudu, V. (1953). Soil conditions and root diseases VIII. Rhizosphere microflora of some important crops of South India. Proceedings Indian Academy of Sciences, 37: 1-13.
- Alagawadi, A.R. and Gaur, A.C. (1992). Inoculation of Azospirillum brasilense and Phosphate solubilizing bacteria on yield of sorghum (Sorghum bicolor (L.) Moech) in dry land. Tropical Agriculture, 69:347-350.
- Alagawadi, A.R. and Krishnaraj, P.U. (1998). Field performance of two local rhizobacteria isolates in sorghum. 37th Annual conference of association of Microbiologists on India, Mangalore, pp 278.
- Alvarez, M.; Gagne, S. and Antoun, H. (1995). Effect of compost on growth promoting rhizosphere. Applied Environmental Microbiology, 61:194-199.
- Anantha, N.T.; Earanna, N. and Suresh, C.K. (2007). Influence of Azotobacter chroococcum strains on growth and biomass of Adothoda Vasica Nees. Karnataka Journal of Agricultural Science, 20(3):613-615.
- Arayankoon, T.; Schomberg, H.H. and Weaver, R.W. (1990). Nodulation and Nitrogen fixation of Guar at high root temperature. Plant Soil, 126:209-203.
- Ashmarin, I.P. and Vorobyov, A.A. (1962). Staticheskiye metody v microbiologicheskih issledovaniyan. (Statistic methods in Microbiology Research). Medgiz Publishers Leningrad (In Russian), pp 75-78.
- Baber, D.A. and Lynch, J.M. (1977). Microbial growth in rhizosphere. Soil Biology and Biochemistry, 9:305-308.
- Baby, U.I.; Tensingh, B.; Ponmurugan, P. and Premkumar, R. (2002). Effect of Azospirillum on nursery grown tea plants. In: Proceeding the 15th plantation crop system (eds.). Sreedharan, K.; Vinodkumar, P.K.; Jayarama and Chulaki, B.M., pp 369-374.
- Backer, P.M.; Wand, H.; Weissbrodt, E.; Kuschk, P. and Stottmeister, U. (1997). Distribution of contaminants and the self purifying potential for aromatic compounds in a Carbonization, Wastewater deposit. Chemosphere, 34:731-748.
- Banerjee, M and Chandra, A.K. (1978). Auxin production potentially of Nitrogen fixers isolated from the phyllosphere of crop plants. Current Science, 7:962-963.
- Barea, J.M.; Boris, A.F. and Oliveres (1983). Interaction between Azospirillum and Vesicular Arbuscular Mycorrhizal fungi, their effects on growth and nutrition of Maize and Ryegrass. Soil Biology and Biochemistry, 15:705-709.
- Bashan, Y. and Holguin (1999). Azospirillum plant relationship: Environmental and Physiological advances (1990-1996). Canadian Journal of Microbiology, 43:103-121.
- Bashan, Y. and Levanony, H. (1990). Current status of Azospirillum inoculation technology. Azospirillum as a challenge for agriculture. Canadian Journal of Microbiology, 35:591-608.
- Beijerinck, M.W. (1901). Uber Oligonitophile Mikroben, Zentrollattfiir Bacteriologie, Parasitenkunde, Infektions Krankheiten and Hygiene, Abteilung II, 7:561-582.
- Beom, R.K.; Kwang, Y.Y.; Baik, H.C.; Tae, H.H.; Seon, K. and Myung, C.L. (2006). Production of Indole-3-Acetic Acid in the plant beneficial strain Pseudomonas chlororaphis 06 is negatively regulated by the global sensor Kinase Gac S. Current Microbiology, 52:473-476.
- Bergy, 1984. Bergey?s Manual of Systematic Bacteriology. (eds.) Kreg, N.R., Williams and Wilking. Baltimores, MA, USA.
- Black, C.A. (1965). Methods of Soil Analysis Agron Monograph 9 Part 2. Chemical and Microbiological Properties, pp 1179-1206.
- Blagodatskaya, E.; Blagodatsky, S.; Dorodnikov, M. and Kuzyakov, Y. (2010). Elevated atmospheric carbondioxide increases microbial growth rates in soil: Results of the carbondioxide enrichment experiments. Global Change Biology, 16:836-848.
- Boring, L.R.; Swank, W.T.; Waide, J.B. and Henderson, G.S. (1988). Sources, fates and impacts of Nitrogen inputs to terrestrial ecosystems: Review and synthesis. Biogeochemistry, 6:119-159.
- Brockwell, J.; Pilka and Holiday, R.A. (1991). Soil pH is the major determinant of the numbers of naturally occurring Rhizobium meliloti in non-cultivated soils in New South Wales. AustralianJournal of Agricultural Research, 31:211-219.
- Brown, M.E. (1972). Plant growth substances produced by microorganisms of soil and rhizoshere. Journal of Applied bacteriology, 43:443-451.
- Canellas, L.P.; Olivares, F.L.; Okorokova and Facanha, A.R. (2002). Humic acids isolated from earthworm compost enhance root elongation, lateral root and plasma membrane H+- ATPase activity in maize roots. Plant Physiology, 130:1951-1957.
- Capone, D.G. (1988). In: Blackburnsn, T.H. and Sorensen, J. (eds.), Benthic Nitrogen Fixation Wiley, New York, pp 85-123.
- Carbonaro, M.; Mattera, M.; Nicoli, S.; Bergamo, P. and Cappelloni (2002). Modulation of antioxidant compounds in organic vs conventional fruit peach (Prunus persica L.) and pear (Pyrus communis L.). Journal of Agriculture and Food Chemistry, 50(19):9-11.
- Cassan, F.; bottini, R.; Schnider, G. and Pkcoli, P. (2001). Azospirillum brasilense and Azospirillum lipoferum hydrolyze conjugates of GA20 and metabolize the resultant Aglycones to GA, in seedlings of rice dwarf mutants. Plant Physiology, 125(4):2053-2058.
- Clark, F.E (1949). Soil microorganisms and plant roots. Advanced Agrotechnology, 1:241-288.
- Clark, P.H. and Slater, J.H. (1986). Physiology and Ecological Diversity. In: Evolution of enzyme structure and function inPseudomonas (ed. Cardiff, C.F., University of Wales Institute of Science and Technology). United Kingdom, Acadamic Press, 10:71-75.
- Cooper, R. (1959). Bacterial fertilizers in the sovient union. Soil Fertility, 22:327-333.
- Costacurta, A. and Vanderleyden, J. (1995). Synthesis of phytohormones by plant associated bacteria. Critical Review of Microbiology, 21:1-18.
- Dagley, S. (1986). Biochemistry of aromatic hydrocarbon degradation in Pseudomonas. In the Bacteria- A Treatise on the structure and function. The biology of Pseudomonas (ed) Sokatch, J.R. Acadamic Press. Volume 10.
- Das, A.C. and Saha, D. (2007). Effects of diazotrophs on mineralization of organic Nitrogen in the rhizosphere soils of rice (Oryza sativa L.). Journal of Crop Weed, 3:69-74.
- De Frietas, J.R. and Germida, J.J. (1990). Plant growth promoting rhizobacteria for winter wheat (Triticum aestivum). Canadian Journal of Microbiology, 36(4):265-272.
- De Ley, J. and Park, I.W. (1966). Molecular biological taxonomy of some free living Nitrogen fixing bacteria. Antonie van Leeuwenhoek, 32:6
- Del Gallo, M. and Fabri, P. (1991). Effect on soil organic matter on chickpea inoculated with Azospirillum brasilense and Rhizobium leguminosarumbv. ciceri. Plant and Soil, 137:171-175.
- Deshwal, V.K.; Singh, S.B.; Chubey, A. and Kumar, P. (2013). Isolation and characterization of Pseudomonas strains from potato rhizosphere at Dehradun valley, India. International Journal of Basic and Applied Sciences, 2(2):53-55.
- Dobbelaere, S.; Croonenborghs, A.; Thys, A.; Ptacek, D.; Vanderleyden, J.; Dutto, P; Labandera-Gonzalez, C.; Caballero-Mellado, J.; Aguirre, J.K.; Kapulnik, Y.; Brener, S.; Burdman, S.; Kadouri, D.; Sarig, S. and Okon, Y. (2001). Responses of agronomically important crops to inoculation with Azospirillum. Australian Journal of Plant Physiology, 28:871-879.
- Dobereiner, J. (1980). Forage grasses and grain crops. In: Methods for evaluating biological Nitrogen fixation (ed.) Bergenson, F., John Wiley and Sons, Limited, pp 535-552.
- Dobereiner, J. (1983). Ten years of Azospirillum. In: Experientia supplementumAzospirillum II (ed.) Klingmuller, W. and Basel, B.V. 48:9-22.
- Dobereiner, J.; Marriel, J.E. and Nery, M. (1996). Ecological distribution of spirillum Beijerinck. Canadian Journal of Microbiology, 22:1464-1473.
- Dowling, D.N. and O? Gara, F. (1994). Metabolites of Pseudomonas involved in the biocontrol of plant disease. Trends Biotechnology, 12:133-144.
- Dubey, S.K. (1996). Combined effect of Bradyrhizosphere japonicum and Phosphate solubilizing Pseudomonas striata on nodulation, yield attributes and yield of rain fed soyabean (Glycine wax) under different sources of Phosphorus in vertisols. Indian Journal of Microbiology, 33:61-65.
- Eckert, B.; Weber, O.B.; Kirchhof, G.; Halbritter, A. Stoffles, M. and Hartmann, A. (2001). Azospirillum doebereinerae sp. Nov. a nitrogen fixing bacteria associated with the C4 grass Miscanthus. International Journal of Systematic and Evolutionary Microbiology, 51:17-26.
- Egamberdieva, D. (2010). Growth response of wheat cultivars to bacterial inoculation in calcareous soil. Plant Soil and Environment, 56(12):570-573.
- Estiyar, H.K.; khoei, F.B. and Behrouzyar, E.K. (2014). The effect of Nitrogen biofertilizer on yield components of white bean (Phaseolus vulgaris (cv) Dorsa). International Journal of Biosciences, 4(11):217.
- Falk, E.C.; Dobereiner, J.; Johnson, J.L. and Krieg, N.R. (1985). Deoxyribonucleic acid homology of Azospirillum amazonense and emendation of the description of the genus Azospirillum.International Journal of Systematic Bacteriology, 35:117-118.
- Falk, E.C.; Johnson, J.L.; Baldani, V.L.D.; Dobereiner, J. and Krieg, N.R. (1968). Deoxyribonucleic and ribonucleic acid homology studies of the genera Azospirillum and Conglomeromonas. International Journal of SystematicBacteriology, 36:80-85.
- Fries, N. (1973). Effects of volatile organic compounds on the growth and development of fungi. Transactions of the British Mycological Society, 60(1):1-21.
- Gadagi, R.S.; Krsihnraj, P.U.; Kulkami, J.H. and Sa, T.M. (2002). Biodiversity of Azospirillum in the ornamental rhizosphere soils of Kamataka. Confronting new realities in the 21st In: Proceedings of the world soil science congress. Sym. 09, Bangkok, Thailand, pp 274.
- Gadagi, S.; Ravi, P.; Krishanraj, U.; Kulkarni, J.H. and Tongmin, S.A. (2003). The effect of combined Azospirillum inoculation and Nitrogen fertilizer on plant growth promotion and yield response of the plant flower Gaillardia pulchella. Scientia Horticulturae, 100(1-4):323-332.
- Gaulke, L.S.; Henry, C.L. and Brown, S.L. (2002). Nitrogen fixation and growth response of Alnus rubra following fertilization with urea or biosolids. Scientia Agricola (Piracicaba, Brazil), 3(4):361-369.
- Gaur, A.C. and Alagawadi, A.R. (1989). Interaction of Nitrogen fixation and Phosphate solubilizing microorganisms on crop productivity. Plant Microbe Interactions Proc. Theme Symposium Bot. section, ISCA, Bangalore, pp 35-46.
- Govindan and Bagyaraj, D.J. (1995). Field response of wetland rice to Azospirillum inoculation. Journal of Soil Biology and Ecology, 15:17-22.
- Graham, P.H. and Vance, C.P. (2000). Nitrogen fixation in perspective: an overview of research and extension needs. Field Crops Research, 65:93-106.
- Hartmann, A.; Fu, H.A. and Burris, R.H. (1988). Influence of amino acid on Nitrogen fixation ability and growth of Azospirillum species. Applied Environmental Microbiology, 54(1):87-93.
- Hemavathi, M. (1997). Effect of organic manures and biofertilizers on growth and productivity of Chrysanthemum (Chrysanthemum morifolium ramat) cv Local Yellow. M.Sc thesis, Division of Horticulture, University Agricultural Sciences, Bangalore (India).
- Herridge, H.F.; Peoples, M. and Boddey, R.M. (2008). Global inputs of biological Nitrogen fixation in agricultural systems. Plant and Soil, 311:1-18.
- Heulin, T.; Rashman, M.; Omar, A.M.N.; Rafidison, Z.; Pierrat, J.C. and Balandreau, J. (1989). Experimental and mathematical procedures of comparing Nitrogen fixing efficiencies of rhizosphere diazotrophs. Journal of Microbiology Methods, 9:163-173.
- Hungria, M. and Franco, A.A. (1963). Effects of high temperature on nodulation and Nitrogen fixation by Phaseolus vulgaris (L.). Plant Soil, 49:95-102.
- Jayasudha, T.; Rangeshwaran and Vajid, N. (2010). Relationship between Indole Acetic Acid production of fluorescent Pseudomonas and plant growth promotion. Journal of Biological Control, 24:349-359.
- Jofre, E.; Mori, G.; Castro, S.; Fabra, A.; Rivarola, V. and Balegno, H. (1996). 2,4 Dichlorophenoxyacetic acid affects the attachment of Azospirillum brasilense cd to maize roots. Toxicology, 107(1):9-15.
- Johnstone, D.S. (1974). Genus I. Azotobacter 1901, 567.
- Azomonas Winogradsky 1938, 391. In: Bergey?s Manual of Determinative Bacteriology 8th Edition (eds. Burhanan, R.E. and Gibbons, N.E.). Williams and Wilkins, Baltimore, pp 254-256.
- Kandil, A.A.; El Hindi, M.H.; Badawi, M.A.; El Morarsy, S.A. and Kalboush, F.A.H.M. (2011). Response of wheat to rates of Nitrogen, biofertilizers and land leveling. Crop and Environment, 2(1):46-51.
- Kavimandan, S.K.; Lakshmi-Kumari, M. and Subba Rao, N.S. (1978). Non-symbiotic nitrogen fixing bacteria in the rhizosphere of wheat, maize, sorghum. Proceedings Indian Academy of Sciences, 87:299-302.
- Khakipour, N.; Kavazi, K.; Mojallali H.; Pazira, E. and Asadirahmani, H. (2006). Production of Auxin hormone by Fluorescent Pseudomonas.American-EurasianJournal of Agriculture and Environmental Science, 4:687-692.
- Khammas, K.M.; Ageron, E.; Grimontand, P.A.D. and Kaiser, P. (1989). Azospirillum irakense sp. Nov. a Nitrogen fixing bacterium associated with rice roots and rhizosphere soil. Research in Microbiology, 140:679-693.
- Khare, E. and Arora, N.K. (20100. Effect of Indole-3-Acetic Acid (IAA) produced by Pseudomonas aeruginosa in suppression of charcoal rot disease of chickpea. Current Microbiology, 61:64-68.
- Kindu, B.S. and Gaur, A.C. (1980). Effect of Nitrogen fixing and Phosphate solubilizing microorganisms single and composite inoculants on cotton. Indian Journal of Microbiology, 20(3):225-229.
- Kolb, W. and Martin, P. (1985). Response of plant roots to inoculation with Azospirillum brasilense and to application o Indole Acetic Acid. In: Azospirillum III Genetics, Physiology, Ecology, Klingmuller W (ed.) Springer-Verlag, Berlin, pp 215-221.
- Kravchenko, I.K. and Doroshenko, E.V. (2003). Nitrogen fixing activity in peat soils from a raised bogs. Microbiology, 72:98-102.
- Kucey, E.; Liu, Z. and Kloppstech, K. (1993). Expression of heat shock proteins during development of barley. Plant Molecular Biology, 23:111-122.
- Kukreja, K.; Suneja, S.; Goyal, S. and Narula, N. (2004). Phtyohormone production by Azotobacter. Themofisher Scientific, 25(1):
- Kumar, A.; Sharma, S. and Mishra, S. (2009). Application of Farmyard Manure (FYM) and vermicompost of Vegetative and generative. Characterstics of Jatropha curcas.Journal of Phytolpathology, 1(4):206-212.
- Li, D.Y.; Eberspacher, J.; Wanger, B.; Kuntzer, J. and Lingens, F. (1991). Degradation 2,4,6 trichlorophenol by Azotobacter sp. ?Strain GP1.? Applied and Environmental Microbiology, 57(7):1920-1928.
- Libbert, V. and Risch, H. (1969). Interactions between plants and epiphytic bacteria regarding their auxin metabolism. Isolation and identification of the IAA producing and destroying bacteria from pea plants. Plant Physiology, 22:51-58.
- Lindow, S.E. and Brandl, M.T. (2003). Microbiology of the phyllosphere. Applied Environmental and Microbiology, 69:1875-1883.
- Line, M.A. and Loutit, M.W. (1973). Nitrogen fixation by mixed cultures of aerobic and anaerobic microorganisms in an aerobic environment. Journal of Microbiology, 74:179-180.
- Maathuis, F.J.M. (2009). Physiological functions of mineral macronutrients. Current opinion in Plant Biology, 12:250-258.
- Magalhaes, F.M.M.; Patniqin, D. and Dobereiner, J. (1981). Infection of maize roots by Azospirillum spp. In: Associative Nitrogen fixation (eds.) Vose, P.B. and Ruschel, A.P., CRC Press, Boca Raton, FI, pp 201-204.
- Mahmoud, R.R.; Popov, Y.; Khavazi, K. and Asadi Rahmani, H. (2010). Genetic diversity and efficiency of Indole Acetic Acid production by the isolates of fluorescent Pseudomonas from Rhizosphere of rice. American-Eurasian Journal of Agriculture and Environmental sciences, 7:103-109.
- Maleki, M.; Mostafee, S.; Mohammad, Z. and Farzenah, M. (2010). Characterization of Pseudomonas fluorescence strains CV-6 isolated from cucumber rhizosphere in varamin as a potential biocontrol agent. Australian Journal of Crop Science, 4(9):676-683.
- Malleswari, D. and Bagyanayana, G. (2013). In vitro screening of rhizobacteria isolated from the rhizosphere of medicinal and aromatic plants for multiple plant growth promoting activities. Journal of Microbiology and Biotechnology Research, 3(1):84-91.
- Mendes, R.; Garbeva, P. and Raaijmarkers, J.M. (2013). The rhizosphere microbiome: significance of plant beneficial, plant pathogenic and human pathogenic microorganisms. FEMS Microbiology Reviews, 35(5):634-663.
- Meunchang, S.; Panichsakpatana, S. and Weaver, R.W. (2006). Tomato growth in soil amended with sugar mill by-product compost. Plant and Soil, 280(1-2):171-176.
- Michiels, K.; Verreth, C. and Vanderleyden, J. (1990). Azospirillum lipoferum and Azospirillum brasilense surface polysaccharide mutants are affected inflocculation. Journal of Applied Bacteriology, 69:705-711.
- Mihustin, E.N. and Shil?nikova, V.K. (1968). Biologisheskaya fiksatsiya atmosfernogo azota (Biological fixation of atmospheric Nitrogen), Moscow: Nauka.
- Mosolov, I.V.; Rampe, H.R. and Alendandrowakya, V.A. (1959). The interactions of higher plants and microorganisms. Ag. Rostholog (USSR), 3:425-450.
- Mrkovac, N. and Milic, V. (2001). Use of Azotobacter chroococcum potentially useful in agricultural application. Annals of Biology, 51:145-158.
- Mulder, E.G. and Brotonegoro, S. (1974). Free living heterotrophic Nitrogen fixing bacteria of the genus Azotobacter. ?In the Soil Biology of Nitrogen fixation? (ed. Quispel, A). North Holland, Amsterdam, pp 37-85.
- Narania, K. and Reddy, S.M. (1979). In vitro production of IAA by five hyphomycetes. Geobios, 6:260:262.
- Naseri, R.; Azadi, S.; Rahimi, M.J.; Maleki, A. and Mirzaei, A. (2013). Effect of inoculation with Azotobacter chroococcum and Pseudomonas putida on yield and some of the important agronomic traits in barley (Hordeum vulgare L.). International Journal of Agronomy and Plant Production, 4(7):1602-1610.
- Nelson, L.M. (2004). Plant growth promotes rhizobacteria (PGPR). Prospects for new inoculants. Online Crop Management, 3(1):301-305.
- O?Brien, M.R. and Maier, R.J. (1989). Molecular aspects of the energetic of the Nitrogen fixation in the Rhizobium legume symbiosis. Biochimica et Biopysica Acta, 974:229-246.
- Ocampo, J.A.; Barea, J.M. and Monotoya, E. (1975). Interactions between Azotobacter and Phosphobacteria and their establishment in rhizosphere as affected by soil fertility. Canadian Journal of Microbiology, 21(8):1160-1165.
- Ojaghloo, F.; Farahvash, F.; Hassanzadeh, A. and Pouryusef, M. (2007). Effects of inoculation Azotobacter and Barvar Phosphate fertilizers on yield of Safflower. Journal of Agricultural Sciences, Islamic Azad University, Tabriz Branch, 25:30.
- Okon, Y. (1985). Azospirillum as a potential inoculant for agriculture. TrendsBiotechnology, 3:223-228.
- Okon, Y. and Labandera-Gonzalez, C.A. (1994). Agronomic applications of Azospirillum. In: Ryder, M.H.; Stephens, P.M. and Brown, G.D. (eds.) improving plant productivity with rhizosphere bacteria. Commonwealth scientific and Industrial Research Organisation, Adelaide, pp 214- 248.
- Omay, S.H.; Schmidt, W.A.; Martin, P. and Bangertti (1993). Indole Acetic Acid production by the rhizosphere bacterium Azospirillum brasilense cd under in vitro conditions. Canadian Journal of Microbiology, 24:734-742.
- Palleroni, N.J. (1986). Taxonomy of Pseudomonas. In the Bacteria- A Treatise on structure and function. The Biology of Pseudomonas (ed) Sokatch, J.R. Acadamic Press. Volume 10.
- Peng, G.; Wang, H.; Zhang, G.; Hou, W.; Liu, Y.; Wang, E. T. and Tan, Z. (2006). Azospirillum melin is sp. Nov. a group of diazotrophs isolated from tropical molasses. International Journal of Systematic and Evolutionary Microbiology, 56:1263-1271.
- Plazinski, J. and Rolfe, B.G. (1985). Influence of Azospirillum strains on the nodulation of clovers by Rhizobium strains. Applied Environmental Microbiology, 49:984-989.
- Polyanskaya, L.M.; Vendine, O.T.; Lysak, L.V. and Zvyagintsev, D.G. (2002). The growth promoting effect of Beijerinckia mobilis and Clostridium species cultures on some agricultural crops. Microbiology, 71(1):109-115.
- Rahim, A.M.A.; Baghadani, A.M. and Abdalla, M.H. (1983). Studies on the fungus flora in the rhizosphere of sugarcane plants. Micropathologia, 81(3):183-186.
- Rai, S.N. and Caur, A.C. (1998). Characterization of Azotobacter spp. and effect of Azospirillum lipoferum on the yield and Nitrogen uptake of crop wheat. Plant and Soil, 109:131-134.
- Ramanan, R. and Kino, H.S. (2016). Algae-bacteria interactions: Evolution, ecology and emerging applications. Biotechnology Advances, 34(1):14-29.
- Ramezanpour, M.R. (2011). Biochemical characteristic and genetic diversity of fluorescent Pseudomonas isolated from rice rhizosphere in North Iran. American-Eurasian Journal of Agriculture and Environmental Sciences, 10:180-185.
- Rangaswami, O. (1988). Soil plant inter-relationship. Indian Phytopathology, 41:165-172.
- Rao, A.V. and Venkateswaralu, B. (1985). Most probable number of Azospirillum associated with roots of inoculated pearl millets. Plant soil, 88:153-196.
- Rastetter, E.; Vitousek, P.; Field, C.; Shaver, C.; Herbert, D. and Agren, G. (2001). Resource optimization and symbiotic Nitrogen fixation. Ecosystems, 4:369-388.
- Reddy, P.K. and Reddy, M.S. (2009). Biochemical and PCR-RAPD characterization of Pseudomonas fluorescens produced antifungal compounds inhibit the rice fungal pathogens in vitro. Journal of Pure and Applied Microbiology, 3(1):1-4.
- Riviere, J. (1963). Rhizosphere et croissant du bl?. Annalaes of Agronomiquis, 14:619-622.
- Roal, B.V. and Vaidya, B.V. (1988). The occurrence of Trichoderma harzianum in the rhizosphere of sugarcane (Saccharum officinarium L.) cultivar co. 419. Indian Botanical Reporter, 7:39-42.
- Saikia, S.P.; Jain, V.; Khetarpal, S. and Aravind, S. (2007). Dinitrogen fixation activity of Azospirillum brasilense in maize (Zea mays). Current Science, 93(9):1296-1299.
- Schortemeyer, M.; Atkin, O.K.; Mc Farlane, N. and Evans, J.R. (2002). Nitrogen fixation by Acacia species increases elevated atmospheric carbondioxide. Plant Cell Environment, 25:567-579.
- Sengupta, R.K. (1990). Isolation of Azotobacter from root and rhizospheric soil samples of grasses and detection of their phages from its natural ecosystem. M.Sc. Dissert, Department of Botany, Kalyani University, India.
- Shank, Y.U.; Demin, O. and Bogachev, A.V. (2005). Respiratory protection nitrogenase complex in Azotobacter vinelandii success. Biological Chemistry, 45:205-234.
- Singh, K.; Babu, S.; Avasthe, R.K.; Yadav, G.S.; Chettri, T.K.; Phempunadi, C.D. and Chatterjee, T. (2015). Bacterial inoculation effect on soil biological properties, growth, grain yield, total phenolic and flavonoids contents of common buckwheat (Fagopyrum ecsulentum Moench) under hilly ecosystem of North East India. African Journal of Microbiology Research, 9(15):1110-1117.
- Soleimanzadeh, H. and Gooshchi, F. (2013). Effects of Azotobacter and Nitrogen chemical fertilizer on yield components of wheat (Triticum aestivum). World Applied Science Journal, 21(8):1176-1180.
- Sprent, J.I. (2001). Nodulation in legumes. Annals of Botany, pp 1-9.
- Sridhar, R. (1996). Studies on the interaction of Pseudomonas fluorescens Migula with certain beneficial and harmful microorganism in the rhizosphere of some crop plants. Ph.D. Thesis. Tamil Nadu Agricultural University, Coinbatore.
- Subramoney, N. and Araham, A. (1962). A note on the non- symbiotic Nitrogen fixation in the red loam soil. Science and Culture, 28:239-240.
- Suthar, S. (2009). Impact of vermicompost and composted farmyard manure on growth and yield of garlic (Allium atium L.) field crop. Internatinal Journal of Plant Production, 3(1):27-38.
- Tal, S. and Okon, Y. (1985). Production of the reserve material poly-Ḍ-ẞ-hydroxybutyrate and its function in Azospirillum brasilense cd. Canadian Journal of Microbiology, 31:608-613.
- Tarrand, J.J.; Kreig, N.R. and Dobereiner, J. (1978). A toxonic study of the spirillum lipoferum grp, with the descriptions of a new genus, Azospirillum gen. Nov. and two species, Azospirillum brasilense (beijerinck) comb. Nov. Canadian Journal of Microbiology, 24; 967-980.
- Taylor, A.C.; Mastronicola, T.A. and Mc Glathery, K.J. (2003). Nitrogen fixation and Nitrogen limitation of primary production along a natural marsh chronosequence. Ecosystem Ecology, 136:431-438.
- Thapliyal, R.; Chaukiyal, S.P. and Polhriyal, T.C. (2009). Effect of Nitrogen and Phosphorus doses on the Nitrogen fixation activity of the Albizia lebbeck plants in the nursery. Improvement and Culture of the Nitrogen fixing trees. NFT News, 11(1):1-4.
- Troxhler, J.; Zeha, M.; Natsch, A.; Nivergelf, J.; Keel, C. and Defago, G. (1998). Transport of biocontrol Pseudomonas fluorescens through 2.5 m deep outdoor lysimeters and survival in effluent water. Soil Biology and Biochemistry, 30:621-631.
- Turco, R.F. and Sadowsky, W.J. (1995). Understanding microflora of bioremediation. In: Skipper, H.D. and Turco, R.F. (eds.), Bioremediation: Science and Applications. Soil Science (special publication). Madison WI: Soil Science Society of American Journal, 43: 87-103.
- Vadakattu, G. and Paterson, J. (2006). Free living bacteria lift soil nitrogen supply. Farming Ahead, 169:40.
- Vasantharajan, W. and Bhat, J.V. (1968). Interrelations of microorganisms and mulberry. II. Phyllospher microflora and Nitrogen fixation in leaf and root surfaces. Plant and Soil, 28(2):258-267.
- Vela, G.R. (1974).Survival of Azotobacter in dry soil. Applied Microbiology, 28(1):77-90.
- Vitousek, P.M.; Cassman, K.; Cleveland, C.; Crews, T. and Field, C.B. (2002). Towards an ecological understanding of biological Nitrogen fixation. Biogeochemistry, 58:1-45.
- Vojinoviv, Z. (1961). Microbiological properties of main types soil in Serbia for Nitrogen cycling. Journal for Scientific Agricultural Research, 43:2-25.
- Wall, L.G.; Hellesten, A. and Huss-Danell, K. (2000). Nitrogen, Phosphorus and the ratio between them affect the nodulation in Alnus incana and Wfolium prattense. Symbiosis, 29:91-105.
- Wang, F.; Li, Z.; Xia, H.; Zou, B.; Liu, J. and Zhu, W. (2010). Effects of Nitrogen fixing and non-Nitrogen tree species on soil properties and Nitrogen transformation during forest restoration in Southern China. Soil Science and Plant Nutrition, 56(2):297-306.
- Watanabe, K. and Hayano, K. (1993). Distribution and identification proteolytic Bacillus species in paddy field soil under rice cultivation. Canadian Journal of Microbiology, 39:674-680.
- Weber, O.B.; Baldani, V.L.D.; Teixeira, K.R.S.; Kirchhof, G.; Baldani, J.J. and Dobereiner, J. (1999). Isolation and characterization of diazotrophic bacteria from banana and pineapple plants. Plant Soil, 210:103-113.
- Whallon, J.H.; Acker, G.F. and Khawas, H.E.L. (1985). Electron microscopy of young wheat roots inoculated with Azospirillum. In: Azospirillum, Genetics, Physiology and Ecology (eds.) Klingmuller, W. Springer-Verlag, Berlin, pp223-239.
- Wu, L.; Wang, H.; Zhang, Z.; Lin, R.; Zhang, Z. and Lin, W. (2011). Comparative metaproteomic analysis on conconsecutively Rehmannia glutinosa-monoculture rhizosphere soil. PLOS ONE, 6(5):e20611.
- Wu, S.C.; Cao, Z.H.; Li, Z..G.; Cheung, K.C. and Wong, M.H. (2005). Effects of biofertilizers containing Nitrogen fixer, P and K solublizers and Arbuscular Mycorrhizal fungi on maize growth: a greenhouse trial. Geoderma, 125:155-166.
- Xie, C.H. and Yokota, A. (2005). Azospirillum Oryzae sp Nov, a Nitrogen fixing bacterium isolated from the roots of rice plant Oryzae sativa. International Journal of Systematic and Evolutionary Microbiology, 55:1435-1438.
- Yan, Z.; Reddy, M.S.; Ryu C.M.; Inroy, M.C.; Wilson, M. and Kloepper, J.W. (2002). Induced systemic resistance against tomato late blight elicited by plant growth promoting rhizobacteria. Phytopathology, 92:1329-1333.
[Harleen Kaur Talwar and Anshu Sibbal Chatli. (2018); MICROFLORA OF SOIL: A REVIEW. Int. J. of Adv. Res. 6 (Oct). 1502-1520] (ISSN 2320-5407). www.journalijar.com
Student