27Jul 2018

GREEN SYNTHESIS OF SILVER NANOPARTICLES USING MORINGA OLEIFERA, EMPLOYING MULTIVARIATE OPTIMIZATION METHODOLOGIES.

  • Department of Chemistry, University of Botswana, Private Bag 00704, Gaborone, Botswana.
  • Abstract
  • Keywords
  • References
  • Cite This Article as
  • Corresponding Author

Multivariate optimization was employed in the synthesis of silver nanoparticles (AgNPs) using a greener approach. The flowers, leaves and stem bark water extracts of Moringa oleifera were reacted with silver nitrate solution to form the silver nanoparticles. Four factors namely; extraction time, extraction volume, reaction time and reaction temperature were optimized simultaneously with absorption via ultraviolet ? visible (UV-VIS) spectrometry used to follow the optimization, i.e., the response. The results showed that there were some interaction factors and as well as curvature that contributed significantly to the response. The silver nanoparticles (AgNPs) showed ultraviolet visible (UV-Vis) absorption peaks at 415, 426 and 420 nm for AgNPs synthesized from the flowers, leaves and stem bark water extracts, respectively. The three different plant parts of Moringa oleifera also produced AgNPs of a spherical shape as observed through a scanning electron microscope (SEM). The average sizes of AgNPs obtained when using the flowers, leaves and stem bark extracts were 273. 98 nm, 96.72 nm and 95.12 nm, respectively. The stem bark extract produced better NPs in terms of uniform dispersity (mono-dispersed), while the flowers and leaves produced poly-dispersed NPs.


  1. El-Nour K. M. M. A., Eftaiha A., Al-Warthan and Ammar R. A. A. (2010): Synthesis and applications of silver nanoparticles. Arab. J. Chem., 3:135-140.
  2. Balavigneswaran C. K., Sujin Jeba Kumar T., Moses Packiaraj R. and Prakash S., (2014):Rapid detection of Cr(VI) by AgNPs probe produced by Anacardium occidentale fresh leaf extracts. Nanosci.,4: 367 - 378.
  3. Kharissova O. V., Dias H. V. R., Kharisov B. I., P?rez B. O. and P?rez V. M. J., (2013): The greener synthesis of nanoparticles.Trends Biotechnol.,31: 240- 248.
  4. Anand K., Gengan R. M, Phulukdaree A. and Chuturgoon A,. (2015): Agroforestry waste Moringa oleifera petals mediated green synthesis of gold nanoparticles and their anti-cancer and catalytic activity. Ind. Eng. Chem., 21: 1105 - 1111.
  5. Nouman W, Anwar F., Gull T., Newton A., Rosa E. and Dom?nguez-Perles R,. (2016): Profiling of polyphenolics, nutrients and antioxidant potential of germplasm?s leaves from seven cultivars of Moringa oleifera Ind. Crops Prod.,83: 166 - 176.
  6. Elumalai K., Velmurugan S., Ravi S., Kathiravan V. and Ashokkumar S,. (2015): Green synthesis of zinc oxide nanoparticles using Moringa oleifera leaf extract and evaluation of its antimicrobial activity. Acta Mol. Biomol. Spectrosc.,143: 158? -164.
  7. Obuseng V., Nareetsile F. and Kwaambwa H. M. (2012): A study of the removal of heavy metals from aqueous solutions by Moringa oleifera seeds and amine-based ligand 1,4-bis[N,N-bis(2-picoyl)amino]butane. Anal. Chim. Acta.,730: 87 -92.
  8. Hellsing M. S., Kwaambwa H. M., Nermark F. M., Nkoane B. B. M., Jackson A. J., Wasbrough M. J., Berts I., Porcar L. and Rennie A. R. (2014): Structure of flocs of latex particles formed by addition of protein from Moringa Colloids Surf. A,460: 460 -467.
  9. Krishnaraj C., Ramachandran R., Mohan K. and Kalaichelvan P. T., (2012): Optimization for rapid synthesis of silver nanoparticles and its effect on phytopathogenic fungi Acta Mol. Biomol. Spectrosc., 93: 95-99.
  10. Khan N. T. and Jameel M. (2016): Optimization Studies of Silver Nanoparticles by Aspergillus terreus. Microb. Biochem. Technol., 8: 488-490.
  11. Khan N. T. and Jameel J. (2016): Optimization of Reaction Parameters for Silver Nanoparticles Synthesis from Fusarium Oxysporum and Determination of Silver Nanoparticles Concentration .J. Mater. Sci. Eng., 5: 1-9.
  12. Geetha A. K., George E., Srinivasan A. and Shaik J., (2013): Optimization of Green Synthesis of Silver Nanoparticles from Leaf Extracts of Pimenta dioica (Allspice). Scientific World J., 2013: 1-5.
  13. Alzahrani E. and Welham K., (2014): Optimization preparation of the biosynthesis of silver nanoparticles using watermelon and study of its antibacterial activity. Int. J. Basic Appl. Sci., 3: 392 -400.
  14. Korbekandi H., Ashari Z., Iravani S. and Abbasi S., (2013): Optimization of Biological Synthesis of Silver Nanoparticles using Fusarium oxysporum. Iran. J. Pharm. Res., 12: 289 - 298.
  15. Bezerra M. A., Santelli R. E., Oliveira E. P., Villar L. S. and Escaleira L. A., (2008): Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta,76: 965 - 977.
  16. Dejaegher B. and Vander Heyden Y., (2011): Experimental designs and their recent advances in set-up, data interpretation, and analytical applications. Pharm. Biomed. Anal., 56: 141-.158.
  17. Hibbert D. B. (2012) Experimental design in chromatography: A tutorial review. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 910: 2 -.13
  18. Leardi R., (2009): Experimental design in chemistry: A tutorial. Anal. Chim. Acta, 652 : 161- 172.
  19. Preu M. and Petz M., (1999): Development and optimization of a new derivatization procedure for gas chromatographic-mass spectrometric analysis of dihydrostreptomycin; Comparison of multivariate and step-by-step optimization procedures. J. Chromatogr. A, 840: 81- 91.
  20. Bharathi V., Patterson J. and Rajendiran R., (2011): Optimization of Extraction of Phenolic Compounds from Avicennia marina ( Forssk .) Vierh using Response Surface Methodology. Int. J. Biol. Biomol. Agric. Food Biotechnol. Eng., 5 (8): 483 -487.
  21. Candioti L. V., Zan M. M. De, C?mara M. S. and Goicoechea C., (2014): Experimental design and multiple response optimization. Using the desirability function in analytical methods development. Talanta,124: 123-138.
  22. Nidya M., Umadevi M. and Rajkumar B. J. M., (2014): Structural, morphological and optical studies of l-cysteine modified silver nanoparticles and its application as a probe for the selective colorimetric detection of Hg2+ . Acta Mol. Biomol. Spectrosc., 133: 265 -271.
  23. Kudle M. R., Kudle K. R., Donda M. R. and Rudra M. P. P., (2013): Synthesis, characterization and antimicrobial activity of silver nanoparticles formed using Moringa oleifera lam Nanosci. Nanotechnol. Int. J.,3: 45 ? 48.
  24. Bindhu M. R., Sathe V. and Umadevi M., (2013): Synthesis, characterization and SERS activity of biosynthesized silver nanoparticles. Acta Mol. Biomol. Spectrosc., 115: 409 ? 415.
  25. Vasanth K., Ilango K., Mohan Kumar R., Agrawal A. and Dubey G. P., (2014): Anticancer activity of Moringa oleifera mediated silver nanoparticles on human cervical carcinoma cells by apoptosis induction. Colloids Surf. B.,117: 354 - 359.
  26. Modi R. P., Mehta V. N. and Kailasa S. K., (2014): Bifunctionalization of silver nanoparticles with 6-mercaptonicotinic acid and melamine for simultaneous colorimetric sensing of Cr3+ and Ba2+ Sens. Actuators B Chem.,195: 562 - 571.
  27. Kumar R., Roopan S. M., Prabhakarn A., Khanna V. G. and Chakroborty S., (2012): Agricultural waste Annona squamosa peel extract: Biosynthesis of silver nanoparticles. Acta Mol. Biomol. Spectrosc., 90: 173 - 176.
  28. Sathyavathi R., Krishna M. B. M. and Rao D. N., (2010): Biosynthesis of Silver Nanoparticles Using Moringa oleifera Leaf Extract and Its Application to Optical Limiting. J. Nanosci. Nanotechnol., 10 : 1 -5.
  29. Prasad T. N. V. K. V. and Elumalai E. K., (2011): Biofabrication of Ag nanoparticles using Moringa oleifera leaf extract and their antimicrobial activity. Asian Pac. J. Trop. Biomed., 1: 439 - 442.

[Phatsimo Mokgweetsi, Bonang B.M. Nkoaneand Inonge T. Chibua. (2018); GREEN SYNTHESIS OF SILVER NANOPARTICLES USING MORINGA OLEIFERA, EMPLOYING MULTIVARIATE OPTIMIZATION METHODOLOGIES. Int. J. of Adv. Res. 6 (Jul). 953-962] (ISSN 2320-5407). www.journalijar.com


Bonang B. M. Nkoane
University of Botswana

DOI:


Article DOI: 10.21474/IJAR01/7445      
DOI URL: https://dx.doi.org/10.21474/IJAR01/7445