13May 2018

A BINARY CODE AS A BASIS FOR UNDERSTANDING THE LOGICAL CONSTRUCTION OF CHINESE HIEROGLYPHIC GRAPHEMES.

  • Drohobych Ivan Franko State Pedagogical University by street Vokzalny, 68 Sloviansk Ukraine 84109.
  • Abstract
  • Keywords
  • References
  • Cite This Article as
  • Corresponding Author

The problem of using binary code for understanding the logical construction of Chinese hieroglyphic graphemes is investigated. Considerable insight has been gained with regard to study Ba Gua? s model that defines the main graphemes of the Chinese writing within three-bit system and two-dimensional space of the Cartesian plane. The evidence from this study towards the idea that using graphemes of the Chinese writing is determined by the logical construction of a standard model which can complicate from one-bit to three-bit system. According to the mathematical laws, the calligraphic lines can be represented as vectors that interact with each other. The Chinese writing as a cultural heritage whicn represents a multidimensional entity is described by graphemes as proto-complex numbers, the main task of which to transfer the dimensions of transcendental concepts into logical categories.


  1. Birrell A. Chinesische Mythen Philipp Reclam jun / Anne Birrell. ? Stuttgart: Verlag, 2002. ? 160 с.
  2. Friedrich J. Geschichte der Schrift / Johannes Friedrich. ? Heidelberg: Carl Winter, 1966. ? 408 с.
  3. June 24, 2003.
  4. Kupriienko S. A. Kipu inkiv: pysemnist, chyslova abo mnemonichna systema?: avtoref. dys. na zdobuttia nauk. stupenia kand. ist. nauk : spets. 07.00.02 ?Vsesvitnia istoriia? / Kupriienko Serhii Anatoliiovych ? Kyiv, 2010. ? 42 s.
  5. Le Tao?sme, essais. Biblioth?que de diffusion du Mus?e Guimet. // Journal Asiatique. ? 1950. ? С. 13?222.
  1. Leibniz G. W. Explication de l'arithm?tique binaire, qui se sert des seuls caract?res O & I avec des remarques sur son utilit? et sur ce qu?elle donne le sens des anciennes figures chinoises de Fohy / Gottfried Wilhelm Leibniz // MATH?MATIQUE LEIBNITZ / Gottfried Wilhelm Leibniz. ? Ann?e: Acad?mie royale des sciences, 1703.
  2. Leibnyts H. V. Trudi po fylosofyy nauky / Hotfryd Vylhelm Leibnyts. ? M.: Lybrokom, 2010. ? 178 s.
  3. Lukianov A. E. Lao-tszы y Konfutsyi: Fylosofyia Dao / Anatolyi Evhenevych Lukianov. ? M.: Vost. lyt., 2000. ? 384 s.
  4. Introduccion al estudio de los quipos / Primeglio, C. Radicati di // Estudios sobre los quipus / Primeglio, C. Radicati di. ? Lima: UNMSM, 2006. ? С. 131?135.
  5. Rezanenko V. F. Formalno-zmistovi vzaiemozviazky elementiv suchasnoi iierohlifichnoi pysemnosti: dys. dokt. fil. nauk: 10.02.15 / Rezanenko Volodymyr Fedorovych ? Kyiv, 1996. ? 431 s
  6. Wang H. Houcan Hanzi zhengti he bihua pinlv dui bihua renzhide yingxiang / H. Wang, J. Zhang, Zhang. // Sinica Acta Psychologica. ? 2003. ? №35.
  7. Wing-tsit C. Instructions for practical living, and other Neo-Confucian writings / Chan Wing-tsit. ? New York: Columbia University Press, 1963. ? 370 с.
  8. 王陽明. 王守仁 撰,吴光、钱明、董平、姚延福 编校 / 王陽明., 1992. ? 1648 с.
  9. Kalko R. Principles of algoritmization of machine translation in the theories of language evolution (based on the Ukrainian-English translation) / Rita Kalko. // International Journal of Advanced Research. ? 2017. ? №5. ? С. 706?709.

[Rita Kalko. (2018); A BINARY CODE AS A BASIS FOR UNDERSTANDING THE LOGICAL CONSTRUCTION OF CHINESE HIEROGLYPHIC GRAPHEMES. Int. J. of Adv. Res. 6 (May). 327-334] (ISSN 2320-5407). www.journalijar.com


Rita Kalko
Drohobych Ivan Franko State Pedagogical University

DOI:


Article DOI: 10.21474/IJAR01/7036      
DOI URL: https://dx.doi.org/10.21474/IJAR01/7036