04Mar 2018

GC-MS ANALYSIS OF BIOACTIVE COMPOUNDS AND ANTIMICROBIAL ACTIVITY OF CRYPTOCOCCUS RAJASTHANENSIS KY627764 ISOLATED FROM BOMBYX MORI GUT MICROFLORA.

  • Department of Microbiology and Biotechnology, Karnatak University, Dharwad, Karnataka, India-580003.
  • Abstract
  • Keywords
  • References
  • Cite This Article as
  • Corresponding Author

The insect gut microflora acts as a large reservoir of bioactive natural products as a diversity of resident microflora is found to be symbiotically associated with the insect. The present study reports the bioactive chemical compounds and the antimicrobial nature of the yeast isolated from the insect Bombyx mori gut. The yeast is identified as Cryptococcus rajasthanensis by Molecular characterization. The Fourier transform infrared spectroscopy (FT-IR) studies of the chloroform and ethyl acetate crude yeast extracts indicated a number of functional groups like alcoholic, phenolic, ester, aldehydic, etc. that accounts for the bioactive nature of the extracts. The Gas chromatography-Mass spectroscopy (GC-MS) analysis of the crude extracts revealed a large number of bioactive compounds of high and low molecular weight that are considered biologically active. Some of the biologically active molecules like phenol 2,4-bis(1,1-dimethylethyl), 1,2-benzenedicarboxylic acid dibutyl ester, celidoniol deoxy, nonadecane, tetratetracontane, 2-methyloctacosane and pentadecane bearing antimicrobial property were detected in both chloroform and ethyl acetate extracts. Furthermore, the crude extracts were subjected to antimicrobial assay by agar well diffusion method and are found to be antimicrobial against four pathogenic bacteria Staphylococcus aureus, Bacillus subtilis, Escherichia coli and Pseudomonas aeruginosa and two fungi Candida albicans and Aspergillus flavus. The chloroform extract showed maximum inhibition for E. coli and minimum for A. flavus.


  1. Abubacker, M.N. and Devi, P.K. (2015): In vitro Antifungal Potentials of Bioactive Compounds Heptadecane, 9- hexyl and Ethyl iso-allocholate isolated from Lepidagathis cristata (Acanthaceae) leaf. Br Med Bull., 336-341.
  2. Beemelmanns, C., Guo, H., Rischer, M. and Poulsen, M. (2016): Natural products from microbes associated with insects. Beilstein J Org Chem., 12:314?327.
  3. Bode, H.B. (2011): Chapter 5: Insect associated microorganisms as a source for novel Secondary metabolites with therapeutic potential. In: Vilcinskas A. (eds) Insect Biotechnology. Biologically-Inspired Systems, vol 2. Springer, Dordrecht.78.
  4. Bonev, B., Hooper, J. and Parisot, J. (2008): Principles of assessing bacterial susceptibility to antibiotics using the agar diffusion method. J Antimicrob Chemother., 61: 1295?1301.
  5. Bottone, E.J. (1980): Cryptococcus neoformans: Pitfalls in Diagnosis Through Evaluation of Gram-Stained Smears of Purulent Exudates. J Clin Microbiol., 12(6): 790-791
  6. Brachmann, A.O. and Bode, H.B. (2013): Identification and bioanalysis of natural products from insect symbionts and pathogens. Adv Biochem Eng Biotechnol.,?135:123-55.
  7. Brei, B., Edman, J.D., Gerade, B. and Clark, J.M. (2004): Relative Abundance of Two Cuticular Hydrocarbons Indicates Whether a Mosquito Is Old Enough to Transmit Malaria Parasites. J. Med. Entomol., 41(4): 807-809.
  8. Calderon-Cortes, N., Quesada, M., Watanabe, H., Cano-Camacho, H., Oyama, K. (2012): Endogenous plant cell wall digestion: a key mechanism in insect evolution. Annu Rev Ecol Evol Syst., 43:45?71.
  9. Chapman, A.D.A. (2007): Report for the Department of the Environment and heritage, September 2005. Australian Biodiversity Information Services, Toowoomba, Australia. environment.gov.au/biodiversty/abrs/publocations/other/species-numbers/03-02-groups-invertebrates.html
  10. Christensen, T.A. (2010): Methods in insect sensory neuroscience. CRC press publishers. ISBN 9781420039429
  11. Cita, Y.P., Suhermanto, A., Radjasa, O.K. and Sudharmono, P. (2017): Antibacterial activity of marine bacteria isolated from sponge?Xestospongia testudinariafrom Sorong, Papua. Asian Pac J Trop Biomed., 7(5): 450-454.
  12. Colazza, S., Aquila, G., De Pasquale, C., Peri and Millar, J.G. (2007): The Egg Parasitoid Trissolcus basalis uses n-nonadecane, a Cuticular Hydrocarbon from its Stink Bug Host Nezara viridula, to Discriminate Between Female and Male Hosts. Chem Ecol., 33:1405?1420
  13. Davis, T.S.,?Hofstetter, R.W.,?Foster, J.T.,?Foote, N.E. and?Keim, P. (2011): Interactions between the yeast Ogataea pini and filamentous fungi associated with the western pine beetle. Microb Ecol.,?61(3):626-34.
  14. Dillon, R.J., Dillon, V.M. (2004:) The gut bacteria of insects: nonpathogenic interactions. Annu Rev Entomol., 49:71?92.
  15. Douglas, A.E. (2015): Multiorganismal insects: diversity and function of resident microorganisms. Annu Rev Entomol., 7 (60): 17?34.
  16. Douglas, A.E., Minto, L.B., Wilkinson, T.L. (2001): Quantifying nutrient production by the microbial symbionts in an aphid. J Exp Biol., 204:349?58.
  17. Engel, P. and Moran, N.A. (2013): The gut microbiota of insects ? diversity in structure and function. FEMS Microbiol Rev., 37: 699?735
  18. Ezenwa, V.O., Gerardo, N.M., Inouye, D.W., Medina, M., Xavier, J.B. (2012): Microbiology: animal behavior and the microbiome. Science., 338:198?99.
  19. Gibson, C.M. and Hunter, M.S. (2010): Extraordinarily widespread and fantastically complex: comparative biology of endosymbiotic bacterial and fungal mutualists of insect. Ecol let., 13(2): 223-234.
  20. Gonzalez, F. (2014): Symbiosis between yeasts and insects. Introductory Pap Fac Landsc Archit, Hortic Crop Prod Sci.,3:1?52.
  21. Grant, G.G., Frech, D., MacDonald, L., Slessor, K.N. and King, G.G.S. (1987): Copulation releaser pheromone in body scales of female whitemarked tussock moth, Orgyia leucostigma (Lepidoptera: Lymantriidae): identification and behavioral role. J Chem Ecol., 13:345-356.
  22. Gumgumjee, N.M. and Hajar, S.A. (2015): Antibacterial activities and GC-MS analysis of phytocomponents of Ehretia abyssinica R.Br. ex fresen. Int J Appl Biol Pharm Tech.,6(2): 236-241.
  23. Hsouna, A.B., Trigui, M., Mansour, R.B., Jarraya, R.M., Damak, M., Jaoua, S.? (2011): Chemical composition, cytotoxicity effect and antimicrobial activity of Ceratonia siliqua essential oil with preservative effects against Listeria inoculated in minced beef meat. Int J Food Microbiol., 148: 66?72.
  24. Jenecius, A.A., Uthayakumari, F. and Mohan, V.R. (2012):GC-MS determination of bioactive components of Sauropus bacciformis blume (euphorbiaceae) J Curr Chem Pharm Sc.,2(4): 347-358.
  25. Khatiwora, E., Adsul, V.B., Kulkarni, M., Deshpande, N.R. and Kashalkar, R.V. (2012): Antibacterial activity of Dibutyl Phthalate : A secondary metabolite isolated from Ipomoea carnea stem. J Pharm Res., 5(1): 150-152.
  26. Knight, A.L. and Witzgall, P. (2013): Combining mutualistic yeast and pathogenic virus--a novel method for codling moth control. J Chem Ecol.,?39(7):1019-26.
  27. K?se, Y.B., Iscan, G. and Demirci, B. (2016): Antimicrobial Activity of the Essential Oils Obtained from Flowering Aerial Parts of?Centaurea lycopifolia et Kotschy and?Centaurea cheirolopha(Fenzl) Wagenitz from Turkey. J Essent Oil Bear Pl., ?19 (3): 762 ? 768.
  28. Limtong, S., Kaewwichian, R., Yongmanitchai, W. and Kawasaki, H. (2014): Diversity of culturable yeasts in phylloplane of sugarcane in Thailand and their capability to produce indole-3-acetic acid. World J Microbiol Biotechnol., 30: 1785?1796.
  29. Linton, R.E.A., Jerah, Lihan, S., Ahmad, I.B. (2013): The Effect Of Combination Of Octadecanoic Acid, Methyl Ester And Ribavirin Against Measles Virus. Int J Sci Tech Res., 2(10): 181-184.
  30. Lockner, D. (1979): Treatment of refractory anemias with methenolone. Acta Med Scand., 205(12): 97-101.
  31. Mak, Y.W., Chuah, L.O., Ahmad, R. and Bha, R. (2013): Antioxidant and antibacterial activities of hibiscus (Hibiscus rosa-sinensis L.) and Cassia (Senna bicapsularis) flower extracts. J King Saud Univ ? Science., 25: 275?282.
  32. Manorenjitha, M.S., Norita, A.K., Norhisham, S., Asmawi, M.Z. (2013): GC-MS analysis of bioactive components of Ficus seligiosa (Linn) Stem. Int J Pharm Biol Sci., 4: 99- 103.
  33. Mewa-Ngongang, M., Ntwampe, S.K.O., du Plessis, H.W., Mekuto, L. and Jolly, N.P. (2017): Biopreservatives from yeasts with antimicrobial activity against common food, agricultural produce and beverage spoilage organisms Antimicrobial research: Novel bioknowledge and educational programs (A. M?ndez-Vilas, ed.) 219-228.
  34. Nasir, H. and Noda, H. (2003): Yeast-like symbiotes as a sterol source in anobiid beetles (Coleoptera, Anobiidae): possible metabolic pathways from fungal sterols to 7-dehydrocholesterol. Arch Insect Biochem Physiol., 52:175?82.
  35. Paul, A.V.N., Singh, S. and Singh, A.K. (2002): Kairomonal effect of some saturated hydrocarbons on the egg parasitoids, Trichogramma brasiliensis (Ashmead) and Trichogramma exiguum (Hymenoptera: Trichogrammatidae). J Appl Entomol., 126: 409?416.
  36. Poojary, M.M., Vishnumurthy, K.A., Adhikari, A.V. (2015): Extraction, characterization andbiological studies of phytochemicals from Mammea suriga. Journal of Pharmaceutical Analysis., 5(3):182?189.
  37. Pozo, M.I., Lachance, M.A. and Herrera, C.M. (2012): Nectar yeasts of two southern Spanish plants: the roles of immigration and physiological traits in community assembly. FEMS Microbiol Ecol., 80(2): 281-293.
  38. Rajagopal, R. (2009): Benefi cial interactions between insects and gut bacteria. Indian J Microbiol., 49:114?119.
  39. Ramya, B., Malarvili, T. and Velavan, S. (2015): GC-MS analysis of bioactive compounds in Bryonopsis laciniosa fruit extract. Int J Pharm Sci Res., 6(8): 3375-3379.
  40. Saluja, P. and Prasad, G.S. (2007): Cryptococcus rajasthanensis nov., an anamorphic yeast species related to Cryptococcus laurentii, isolated from Rajasthan, India. Int J Syst Evol Microbiol., 57: 414?418.
  41. Sivaraman, T., Sreedevi, N.S. and Meenatchisundaram, S. (2017): Phytochemical and gas chromatographic-mass spectrometric analysis of ethanolic extract of Rauvolfia serpentina Eur J Pharm Med Res., 4(2): 646-650.
  42. Sivasubramanian, R. and Brindha, P. (2013): In- vitro cytotoxic, antioxidant and GC-MS studies on Centratherum punctatum Int J Pharm Sci., 5( 3): 364-367.
  43. Soria-Mercado,E., Villarreal-G?mez, L.J., Rivas, G.G., Nahara, E. and S?nchez, A. (2012): Chapter 3: Bioactive Compounds from Bacteria Associated to Marine Algae. InTech publishers. ISBN 978-953-51-0151-2.
  44. Spikes, A.E., Paschen, M.A. Millar, J.G., Moreira, J., Hamel, P.B., Schiff, N.M. and Ginzel, M.D. (2010): First Contact Pheromone Identified for a Longhorned Beetle (Coleoptera: Cerambycidae) in the Subfamily Prioninae. J Chem Ecol., 36:943?954.
  45. Sudharsan, S., Saravanan, R., Shanmugam, A., Vairamani, S., Mohan kumar, R., Menaga, S. and Ramesh, N. (2011): Isolation and Characterization of Octadecanoic Acid from The Ethyl Acetate Root Extract of?Trigonella foneum graecum L. by Using Hydroponics Method. J Bioterr Biodef., 2:-1-5.
  46. Tamura, K., Dudley, J., Nei, M. and Kumar, S. (2007): MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol.,24:1596-1599.
  47. Tejado, A., Penaa, C., Labidia, J., Echeverria, J.M. and Mondragon, I. (2007): Physico-chemical characterization of lignins from different sources for use in phenol-formaldehyde resin synthesis. Bioresource Technology., 98: 1655?1663.
  48. Teresa, R.C.M., Rosaura, V.G., Elda, C.M. and Ernest, G.P. (2014): The avocado defense compound phenol-2,4-bis (1,1-dimethylethyl) is induced by arachidonic acid and acts via the inhibition of hydrogen peroxide production by pathogens. Physiol Mol Plant Pathol., 87: 32-41.
  49. Uddin, S.J., Grice, D., and Tiralongo, (2012): Evaluation of cytotoxic activity of patriscabratine, tetracosane and various flavonoids isolated from the Bangladeshi medicinal plant Acrostichum aureum . Pharmaceutical Biology., 50(10): 1276?1280.
  50. Urubschurov, V. and Janczyk, P. (2011): Biodiversity of Yeasts in the Gastrointestinal Ecosystem with Emphasis on Its Importance for the Host. Edited by Oscar Grillo and Gianfranco Venora, p. 277. ISBN 978-953-307-772-7
  51. Vega, F.E. and Dowd, P.F. (2005): The role of yeasts as insect endosymbionts. In: Vega FE, Blackwell M, editors.?Insect-Fungal Associations: ecology and evolution.?Oxford University Press; New York., pp. 211?243.
  52. Wanxi, P., Shengbo, G., Dongli, L. and Daochun, Q. (2014): Molecular characteristics of three extractives of?Cinnamomum camphoraPak J Pharm Sci.,? 27.
  53. Witzgall, P.,?Proffit, M.,?Rozpedowska, E.,?Becher, P.G.,?Andreadis, S.,?Coracini, M.,?Lindblom, T.U.,?Ream, L.J.,?Hagman, A.,?Bengtsson, M.,?Kurtzman, C.P.,?Piskur, J.,?Knight, A. (2012): "This is not an apple"-yeast mutualism in codling moth. J Chem Ecol., 38(8):949-57.
  54. Yogeswari, S., Ramalakshmi, S., Neelavathy, R. and Muthumary, J. (2012): Identification and Comparative Studies of Different Volatile Fractions from Monochaetia kansensis by GCMS Global J Pharm., 6 (2): 65-71.
  55. Younis, G.,?Awad, A., ? Dawod,E.?and? Yousef, N.E. (2017): Antimicrobial activity of yeasts against some pathogenic bacteria. Vet World., 10(8): 979?983.
  56. Zakariaa, M.B., Vijayasekarana, Ilhama, Z. and Muhamad, N.A. (2014): Anti-Inflammatory Activity of Calophyllum inophyllum Fruits Extracts. Procedia Chemistry., 13:218 ? 22

[Delicia Avilla Barretto and Shyam Kumar Vootla. (2018); GC-MS ANALYSIS OF BIOACTIVE COMPOUNDS AND ANTIMICROBIAL ACTIVITY OF CRYPTOCOCCUS RAJASTHANENSIS KY627764 ISOLATED FROM BOMBYX MORI GUT MICROFLORA. Int. J. of Adv. Res. 6 (Mar). 525-538] (ISSN 2320-5407). www.journalijar.com


Shyam Kumar Vootla
Department of Microbiology and Biotechnology, Karnatak University, Dharwad, Karnataka, India-580003

DOI:


Article DOI: 10.21474/IJAR01/6700      
DOI URL: https://dx.doi.org/10.21474/IJAR01/6700