30Dec 2017

PLANT HORMONES SYNTHESIZED BY MICROORGANISMS AND THEIR ROLE IN BIOFERTILIZER-A REVIEW ARTICLE.

  • Department of plant pathology, Dr Yashwant Singh Parmar University of Horticulture and Forestry, Nauni, Solan-173230.
  • Department of Basic Science (Microbiology), Dr Yashwant Singh Parmar University of Horticulture and Forestry, Nauni, Solan-173230.
Crossref Cited-by Linking logo
  • Abstract
  • Keywords
  • References
  • Cite This Article as
  • Corresponding Author

Plant growth promoting rhizobacteria (PGPR) are the soil bacteria inhabiting around/on the root surface and are directly or indirectly involved in promoting plant growth and development via production and secretion of various regulatory chemicals in the vicinity of rhizosphere Various species of bacteria like Pseudomonas, Azospirillum, Azotobacter, Klebsiella, Enterobacter, Alcaligenes, Arthrobacter, Burkholderia, Bacillus and Serratia have been reported to enhance the plant growth directly by either assisting in resource acquisition (nitrogen, phosphorus and essential minerals) or modulating plant hormone levels, or indirectly by decreasing the inhibitory effects of various pathogens in the forms of biocontrol agents. The ability to synthesize growth stimulating phytohormones by numerous prokaryotic and eukaryotic microorganisms including numerous soil bacteria and fungi is reviewed, with emphasis on their effect on plant physiology and development. A phytohormone is an organic substance synthesized in defined organs of the plant that can be translocated to other sites, where it triggers specific biochemical, physiological and morphological responses. The commonly recognized classes of phytohormones, regarded as the ?classical five?, are: the auxins, gibberellins, cytokinins, abscisic acid and ethylene. Several PGPR are reported to produce IAA, gibberellic acid and cytokinins in the rhizospheric soil and thereby play a significant role in increasing the root surface area and number of root tips in many plants. Plant hormones contribute to the coordination of diverse physiological process in plants, including the regulation of quiescence and seed germination, root formation, fluorescence, branching, tillering, and fruit ripening. They increase plant resistance to environmental factors and induce or suppress the expression of genes and the synthesis of enzymes, pigments and metabolites (Arsad and Frankenberger, 1991; Kulaeva and Kuznetsov, 2002).


  1. Arshad, M., Frankenberger J.W.T. (1991).Microbial production of plant hormone.The rhizosphere and plant growth. In: Keister, D.L., Cregan, P.B.,editors. The Netherland: Kluwer Academic. PubI; 327-334.
  2. Kulaeva, O.N., Kuznetsov, V.V. (2002). Fiziol Rastenii 49 (4),626-640.
  3. Moore, T.C. (1979).Biochemistry and physiology of plant hormones. Spring-Verlag:New Yark
  4. Crozier, A., Kamiya,Y., Bishop, G., Yakota, T.(2001).Biosynthesis of hormones and elicitors molecules. In:Buchanan, B.B.,Grussem, W., Jones, R.L. editors.Biochemistry and molecular biology of plants. American society of plants biologists; 850-900.
  5. Burg, S P.(1962).The physiology of ethylene formation. Annual Review of Plant Physiology13, 265-302.
  6. Penrose, D.M., Glick, B.R.(2003).Methods for isolating and characterizing ACC deaminase containing plant growth-promoting rhizobacteria. Physiology plant 118, 10-15.
  7. Kumar, P. K.R., Losane, B.K.(1989). Microbial production of gibberellins: state of the art. Advances Application of Microbiology l34, 29-139.
  8. Costacurta, A., Vanderleyden, J.(1995).Synthesis of phytohormones by plant-associated bacteria. Critical Review of Microbiology 21, 1-18.
  9. Patten, C. L., Glick, B.R.(2000a).Bacterial biosynthesis of indole-3-acetic acid. Canadian Journal of Microbiology 42, 207-220.
  10. Kameneva, S. V., Muronets, E. M.(1999).Genetika 35(11), 1480-1494.
  11. Kravchenko, L.V., Azarova, T. S., Makarova, N. M., Tikhonovich, I. A.(2004). 73(2), 195-198.
  12. Suzuki, S. He. Y.,Oyaizu, H.(2003).Current Microbiololy 47(2), 138-143.
  13. Osten, A.N., Cohen, J.D.(1999). An in vitro system from maize seedlings for tryptophan - independent inodole-3acetic acid biosynthesis. Plant Physiology 119,173-178.
  14. Frankenberger, Jr. W. T., Poth, M.(1987). Biosynthesis of indole-3-acetic acid by pine ectomycorrhizal fungus Pisolithus tinctorius. Application of Environment Microbiology 53,2908-2913.
  15. Bartling, D., Seedrof, M., Schmidt, R.C., Weiler, E. M.(1994).Molecular characterization of two cloned nitrilases from Arabidopsis thaliana key enzyme in biosynthesis of plant hormone indole-3-acetic acid.Proc.Nati.Acad.Sci.USA.91,6021-6025.
  16. Tein, T. M., Gaskins, M. H., Hubbell, D. H.(1979). Plant growth substances produced by Azospirillum brasilense and their effect on the growth of Pearl Millet (Pennisetum americanum L.) Applied Environment Microbiology 37, 1016-1024.
  17. Atzorn, R., Crozier, A., Wheeler, C. T., Sandberg, G. (1988).Production of gibberellins and indole-3-acetic acid by Rhizobium phaseoli in relation to nodulation of Phaseoli vulgaris Planta.175, 532-538.
  18. Badenoch-Jones, J., Summons, R. E., Djordjevic, M. A., Shine, J., Letham, D. S., Rolfe, B. G.(1982).Mass spectrometric quantification of indole-3-acetic acid in culture upernatants of Rhizobium strains, studies in relation to root hair curling and????????????????????????????????????????????????????????????????????????? ???????????????nodule initiation. Applied Environment Microbiology 44, 275-280.
  19. El-Khawas, H., Adachi, K.(1999).Identification and quantification of auxins in? culture media of Azospirillum and Klebsiella and their effect on rice roots. Biology of Fertile Soils 28, 377-381.
  20. Fuentes-Ramirez, L. E., Jimenez, Salgado, T., Abarca, Ocampo, I. R., Caballero-Mellado,J.(1993). Acetobacter diazotrophicus an indoleacetic acid producing bacterium isolated from sugarcane cultivars of Mexico. Plant Soil154, 145-150.
  21. Bastian, F., Cohen, A., Piccoli, P., Luna, V., Baraldi, R., Bottini, R.(1998). Production of indole-3-acetic acid and gibberellinsA1 and A3 by Acetobacter diazotrophicus and Herbaspirillum seropedicae in chemically-defined culture? Plant Growth Regulators24, 7-11.
  22. Fallik, E., Okon, Y., Epstein, Y. E., Goldman, A., Fischer, M.(1989). Identification and quantification of IAA and ABA in Azospirillum brasilense inoculated maize roots. Soils Biology and Biochemistry21,147-153. Comai, L., Kosuge, T.(1980). Involvement of plasmid deoxyribonucleic acid in indoleacetic acid synthesis in Pseudomonas savastanoi. Journal of Bacteriology143,959- 957.
  23. Liu, S. T., Perry, K. L., Schardl, C. L., Kado, C. I.(1982). Agrobacterium Ti plasmid indoleacetic acid gene is required for crown gall oncogenesis. Proc. Natl. Acad. Sci. USA 79, 2812-2816.
  24. Maulis, S., Haviv-Chesner, A., Brandl, M. T., Lindow, S. E., Barash, I.(1998). Differential involvement of indole-3-acetic acid biosynthesis a pathway in pathogenicity and epiphytic fitness of Erwinia herbicola gysophilae. Mol. Plant-Microbe Interiact11,634-642.
  25. Sergeeva, E., Liaimer, A., Bergaman, B.(2002). Evidence for the production of the phytohormone indole-3-acetic acid by cyanobacteria.Planta171, 1718-1724.
  26. Kobayashi, M., Gaskin, P., Spray, C., Phinney, B. Mac Millan, J.(1994). The metabolism of A1 by tall and dwarf mutants of Oryza sativa and Arabidopsis thaliana.Plant Physiology106, 1367-1372.
  27. Helliwell, C. A., Chandler, P. M., Poole, A., Dennis, E. S., Peacock, W. J.(2001). The CYP88A cytochrome P450, ent-kaurenoic acid oxidase, catalyzes three steps of the gibberellins biosynthesis pathway. Proc.Natl.Acad.Sci.USA98, 2056-2070.
  28. Spray, C. R., Kobayashi, M., Suzuki, Y., Phinney, B. O., Gaskin, P., MacMillan, J.(1996). The dwarf- l (dl) mutant of Zea mays blocks three steps in the gibberellins biosynthesis pathyway. Proc. Natl. Acad. Sci. U.S.A 93, 10515-10518.
  29. Rojas, M.C., Hedden, P., Gaskin, P., Tudzynski, B.(2001). The P450-I gene of Gibberella fujikuroi encodes a multifunctional enzyme in gibberellin Proc. Natl. Acad. Sci. USA 98, 5838-5843.
  30. Fernandez-Martin, R., Reys, F., Domenech, C. E., Cabrera, E., Bramley, P. M., Barrero, A. F., Avalos, J., Cerda- Olmedo, E.(1995).Gibberellin biosynthesis in gib mutants of Gibberella? Journal of Biology and Chemistry270,14970-14974.
  31. Cassan, F., Bottini, R., Schneider, G., Piccoli, P.(2001). Azospirillum brasilense and Azospirillum lipoferum hydrolyze conjugates of GA20 and metabolize resultant aglycones to GA1 in seedlings of rice dwarf mutants. Plant Physiology 125, 2053-2058.
  32. Fulchieri, M., Lucangeli, C., Bottini, R.(1993). Inoculation with Azospirillum lipoferum affects growth and gibberellins status of corn seedling roots. Plant Cell Physiology 34, 1305-1309.
  33. Takei, K., Sakakibara, H., Sugiyama, T.(2001). Identification of genes encoding adenylate isopentenyltransferase, a cytokinin biosynthesis enzyme in Arabidopsis thaliana. Journal of Biology and Chemistry 276, 26405-26410.
  34. Roberto, F., Kosuge, T.(1987). Phytohormone metabolism in Pseudomonas syringae Savastanoi. In: Fox, J. E., Jacob, M. editors. Molecular biology of plant growth control 371-380.
  35. Lichter, A., Barash, I., Valinsky, L., Manulis, S.(1995).The genes involved in cytokinin biosynthesis in Erwinia herbicola gypsophilae, characterization and role in gall formation. Journal of Bacteriology177, 4457-4465.
  36. Cacciari, I., Lippi, D., Pietrosanti, T., Pietrosanti, W.(1989). Plant Soil 115, 151-153.
  37. Datta, C., Basu, P.(2000). Microbiology Reviews 155(2), 123-127.
  38. Wilkinson, K., Dixon, K., Sivasithamparam, K., Ghisalberti, E.(1994).Plant Soil154,291-295.
  39. Olyunina, L.N., Shabaev, V. P.(1996).Mikrobiologiya 65(6), 813-817.
  40. Tsavkelova, E. A., Cherdyntseva, T. A., Netrusov, A. I.(2005). Mikrobiologiya.74(1), 55-62.
  41. Park, M., Kim, C., Yang, J., Lee, H., Shin, W., Kim, S., Sa, T.(2005). Microbiology Reviews160(2), 127-133.
  42. Mordukhova, E. A., Skvortsova, N. P., Kochetkov, V. V.,Dubeikovskii A N and Boronin A M.(1991). Mikrobiologiya 60 (3), 494-500.
  43. Ivanova, E. G., Doronina, N. V., Trotsenko, Yu, A.(2001).Mikrobiologiya70(4),452-
  44. Belimov, A. A., Ivanchikov, A., Yu., Yudkin, L.V., Khamova, O. F., Postavkaya, S. M., Popolzukhina, P. V., Shamakova, A. A., Kozlova, G. Yu.(1999). Mikrobiologiya68(3),392-397.
  45. White, R.(1987). Journal of Bacteriology 169(12),5859-5860.
  46. Basu, S., Sun, H., Brian, L., Quatrano, R., Muday, G.(2002). Plant Physiology130(1), 292?302.
  47. Gunasekaran, M., Weber, D. (1972). Mycologia.64,1180?1183.
  48. Furukawa, T., Koga, J., Takashi, A., Kishi, K., Syono, K.(1996). Plant Cell Physiology37,899?905.
  49. Barroso, J., Chaves, Neves, H., Pais, M.(1986). New Phytology 103, 745?749.
  50. Ahmad, M., Winter, A. (1969). 88,61?66.
  51. Tsavkelova, E. A., Cherdyntseva, T. A., Netrusov, A. I.(2003). Fitopatol37(5), 5?83.
  52. Escamilla, S. E. M., Dendooven, , Uscanga, R. J. A., Monroy,? R. A. I., Gonzalez, A. G. de la, Torre, M. M.(1999). World Journal of Microbiol. Biothechnology15,753?755.
  53. Badenoch-Jones, J, Summons, R., Djordjevic, M., Shine, M., Letham, D., Rolfe, B.(1982). Applied Environment Microbiology44(2), 275?280.
  54. Grappelli, A., Rossi, W.(1981). Folia Microbiology (Praha).26(2),137?141.
  55. Cassan, F., Lucangeli, C., Bottini, R., Piccoli, P. (2001). Plant Cell Physiology 42 (7),763?767.
  56. Vinklarkova, K., Sladky, Z. (1978). Folia Microbiology (Praha).23(1), 5559.
  57. Barea, J., Navarro, E., Palomares, A., Montoya, E.(1974).Journal of Applied Bacteriology37,171?174.
  58. Chernyad?ev, I.I. (2005). Biokhimiya I Mikrobiologiya41(2),133?147.
  59. Upadhyaya, N., Letham, D., Parker, C., Hocart, C.,Dart, P. (1991). Int. 24(1),123?130.
  60. Shepelyakovskaya, A.O., Doronina, N.V., Laman, A.G., Brovko, F.A.,Trotsenko,Yu.A.(1999). Akad. Nauk 368(4),555?557.
  61. Gray, J., Gelvin, S., Meilan, R., and Morris, R. (1996). Plant Physiology 110(2), 431?438.
  62. Maor, R., Haskin, S., Levi-Kedmi, H., Sharon, A. (2004). Applied Environmental Microbiology70 (3),1852?1854.
  63. Jain, P., Patriquin, D. (1984). Root deformation bacterial attachment and plant growth in wheat-Azospirillum Applied Environmental Microbiology 48, 1208-1213.
  64. Dobbelare, S., Croonenborghs, A., Thys, A., Vande Broek, A., Vanderleyden, J. (1999). Phytostimulatory effect of Azospirillum brasilense wild type strain and mutant strains altered in IAA production on wheat. Plant Soil 212, 155-164.
  65. Dileep, C., Kumar, B., Dileep, S., Dube, H.C.( 1998). Indian Journal of Experimental Biololgy36 (4), 399?402.
  66. Zvyagintsev, D.G. (1995). Impacts Appl. Microbiol. Biotechnol. 10th Int. Conf.Glob, Ellsinghore: IAMS.
  67. Tudzynski, B. (2005). Applied Microbiol Biotechnology66,597?611.
  68. Polyanskaya, L.M., Vedina, O.T., Lysak, L.V., Zvyagintsev, D.G. (2002). Mikrobiologiya71(1),? 123?129.
  69. Lalande, R., Bissonnette, N., Coutl?e, D., and Antoun, H. (1989). Plant Soil 115, 7?11.
  70. Glick, B.R., Pasternak, J.J.( 2002). Molecular Biotechnology. Principles and Applications of Recombinant DNA. Molekulyarnaya biotekhnologiya. Printsipyi primenenie. Washington, DC: ASM Press.
  71. Sevilla, M., Burris, R. H., Gunapala, N. and Kennedy, C. (2001). Comparison of benefit to sugarcane plant growth and 15N2 incorporation following inoculation of sterile plants with Acetobacter diazotrophicus wild type and Nif mutants strains. Molecular Plant- Microbe Interaction14, 833-843.

[Shweta Sharma and Mohinder Kaur. (2017); PLANT HORMONES SYNTHESIZED BY MICROORGANISMS AND THEIR ROLE IN BIOFERTILIZER-A REVIEW ARTICLE. Int. J. of Adv. Res. 5 (Dec). 1753-1766] (ISSN 2320-5407). www.journalijar.com


Shweta Sharma
Dr YS PARMAR UNIVERSITY OF HORTICULTURE AND FORESTRY, NAUNI, SOLAN (HP)-173230)

DOI:


Article DOI: 10.21474/IJAR01/6144      
DOI URL: https://dx.doi.org/10.21474/IJAR01/6144