OXIDATIVE BALANCE IN BRAIN AFTER EXPOSURE TO ARSENIC IN EX VIVO AND IN VIVO MODELS.
- Universidad de Buenos Aires. Facultad de Farmacia y Bioqu?mica, Fisicoqu?mica. Buenos Aires, Argentina.
- CONICET-Universidad de Buenos Aires. Instituto de Bioqu?mica y Medicina Molecular (IBIMOL). Buenos Aires, Argentina.
- Universidad de Buenos Aires. Facultad de Farmacia y Bioqu?mica, Toxicolog?a y Qu?mica Legal. Buenos Aires, Argentina.
- Abstract
- Keywords
- References
- Cite This Article as
- Corresponding Author
The hypothesis of this work was that radical generation after exposure to As may contribute to its toxic effects in the brain tissues. Oxidative status of brain was studied, both using ex vivo and in vivo protocols of exposure to the toxic. The generation rate of lipid radicals (LR●), and ascorbyl radical (A●) content, were measured by Electron Paramagnetic Resonance (EPR). In the ex vivo model control brain homogenates were exposed to As, and a 2-fold increase was detected in the LR● generation rate, with no changes in A● radical content. A significant decrease of 33% and 30% in the content of glutathione (GSH) was measured after exposure to 3.3 and 4.0 pmol As/mg FW, respectively. In the in vivo model, As was ip injected to rats and the rate of generation of LR● by homogenates of brain tissue, was increased by 81 and 122%, as compared to control animals after the injection of 3.0 and 5.8 mg As/kg, respectively. Neither GSH, nor -tocopherol (-T) nor ascorbate (AH-) content was affected in As-treated rats, as compared to the values from control animals. The LR●/α-T content ratio was significantly increased in As-treated animals as compared to control brains. The A●/AH− content ratio was not affected by As exposure. The content of total Fe showed non-significant differences between control and rat brains after 24 h of As administration. The data presented here showed new evidence on the generation of specific radical species by As treatment employing EPR methodologies in both, ex vivo and in vivo models. The data suggested the triggering of different pathways leading to some reactive species generation may occur accordingly to the via As reaches the brain, even when the same concentration of the toxic was achieved by the tissues.
- Ahmad, S., Kitchin, K.T., Cullen, W.R., 2000. Arsenic species that cause release of iron from ferritin and generation of activated oxygen. Arch. Biochem. Biophys. 382(2), 195-202.
- Ahola, T., Fellman, V., Kjellmer, I., Raivio, K.O., Lapatto, R., 2004. Plasma 8-isoprostane is increased in preterm infants who develop bronchopulmonary dysplasia or periventricular leukomalacia. Ped. Res. 56, 88-93.
- Albores, A., Cebrian, M.E., Bach, P.H., Connelly, J.C., Hinton, R.H., Bridges, J.W., 1989. Sodium arsenite induced alterations in bilirubin excretion and heme metabolism. J. Biochem. Toxicol. 4(2), 73-78. doi:?10.1002/jbt.2570040202
- Aposhian, H.V., 1989. Biochemical toxicology of arsenic. Rev. Biochem. Toxicol. 10, 265-299.
- Asghar, A., Zahra, M., 2017. Beneficial role of deferasirox and deferiprone in the mobilization of arsenic and recovery of iron in rat tissues. Main Group Chem. 16(1), 1-5. doi: 10.3233/MGC-160215
- Aung, K.H., Kurihara, R., Nakashima, S., Maekawa, F., Nohara, K., Kobayashi, T., Tsukahara, S., 2013. Inhibition of neurite outgrowth and alteration of cytoskeletal gene expression by sodium arsenite. Neurotoxicology 34, 226-235. doi:1016/j.neuro.2012.09.008
- Bharti, V.K., Srivastava, R.S., Sharma, B., Malik, J.K., 2012. Buffalo (Bubalusbubalis) epiphyseal proteins counteract arsenic-induced oxidative stress in brain, heart, and liver of female rats. Biol. Trace Elem. Res. 146(2), 224-229. doi: 10.1007/s12011-011-9245-0
- Bonetto, J.G., Villaamil Lepori, E., Puntarulo, S., 2014. Update on the oxidative stress associated with arsenic exposure. Curr. Top. Toxicol. 10, 37-48.
- Brumby, P.E., Massey, V., 1967. Determination of nonheme iron, total iron and cooper. Meth. Enzymol. 10, 463-474.
- Buettner, G.R., 1987. Spin trapping: ESR parameters of spin adducts. Free Radic. Biol. Med. 3, 259-303.
- Buettner, G.R., Jurkiewicz, B.A., 1993. Ascorbate free radical as a marker of oxidative stress: an EPR study. Free Radic. Biol. Med. 14, 49-55.
- Catalayud, M., Devesa, V., V?lez, D., 2013. Differential toxicity and gene expression in Caco-2 cells exposed to arsenic species. Toxicol. Lett. 218(1), 70-80. doi: 10.1016/j.toxlet.2013.01.013
- Chaudhuri, A.N., Basu, S., Chattopadhyay, S., Das Gupta, S., 1999. Effect of high arsenic content in drinking water on rat brain. Indian J. Biochem. Biophys. 36, 51-54.
- Desai, I.D., 1984. Vitamin E analysis methods for animal tissues. Meth. Enzymol. 105, 138-146.
- Drobna, Z., Xing, W., Thomas, D.J., St?blo, M., 2006. shRNA silencing of AS3MT expression minimizes arsenic methylation capacity of HepG2 cells. Chem. Res. Toxicol. 19(7), 894-898. doi: 10.1021/tx060076u
- European Communities Council Directives 24 November 1986 (86/609/EEC).
- Garcia-Chavez, E., Santamaria, A., Diaz-Barriga, F., Mandeville, P., Juarez, B.I., Jimenez-Capdeville, M.E., 2003. Arsenite-induced formation of hydroxyl radical in the striatum of awake rats. Brain Res. 976(1), 82-89.
- Gonz?lez, P.M., Abele, D., Puntarulo, S. 2012. A kinetic approach to assess oxidative metabolism related features in the bivalve Myaarenaria. Theory Biosci. 131(4), 253-264.
- Gonz?lez, P.M., Aguiar, M.B., Malanga, G., Puntarulo, S., 2013. Electronic paramagnetic resonance (EPR) for the study of ascorbyl radical and lipid radicals in marine organisms. Comp. Biochem. Physiol. A 165(4), 439-447.
- Guide for the Care and Use of Laboratory Animals (National Academy of Sciences, NIH Publication 6-23, revised 1985).
- Halliwell, B., 1994. Free radicals and antioxidans. Free radicals, antioxidants, and human disease: curiosity, cause, or consequence? Lancet 344, 721-724.
- Hayakawa, T., Kobayashi, Y., Cui, X., Hirano, S., 2005. A new metabolic pathway of arsenite: arsenic-glutathione complexes are substrates for human arsenic methyltransferase Cyt19. Arch. Toxicol. 79(4), 183-191.
- Jing, Y.K., Dai, J., Chalmers-Redman, R.M.E., Tatton, W.G., Waxman, S., 1999. Arsenic trioxide selectively induces acute promyelocytic leukemia cell apoptosis via a hydrogen peroxide-dependent pathway. Blood 94(6), 2102-2111.
- Jomova, K., Jenisova, Z., Feszterova, M., Baros, S., Liska, J., Hudecova, D., Rhodesd, C.J., Valko, M., 2011. Arsenic: toxicity, oxidative stress and human disease. J. Appl. Toxicol. 31(2), 95-117. doi: 10.1002/jat.1649
- Kharroubi, W., Haj Ahmed, S., Nury, T., Andreoletti, P., Sakly, R., Hammami, M., Lizard, G., 2017. Mitochondrial dysfunction, oxidative stress and apoptotic induction in microglial BV-2 cells treated with sodium arsenate. J. Environ. Sci. 51, 44-51. doi: 10.1016/j.jes.2016.08.028
- Kotake, Y., Tanigawa, T., Tanigawa, M., Ueno, I., Allen, D.R., Lai, C., 1996. Continous monitoring of cellular nitric oxide generation by spin trapping with an iron-dithiocarbamate complex. Biochim. Biophys. Acta 1289, 362-368.
- Kutnink, M.A., Hawkes, W.C., Schaus, E.E., Omaye, S.T., 1987. An internal standard method for the unattended high-performance liquid chromatographic analysis of ascorbic acid in blood components. Anal. Biochem. 166, 424-430.
- Lai, E.K., Crossley, C., Sridhar, R., Misra, H.P., Janzen, E.G., McCay, P.B., 1986. In vivo spin trapping of free radicals generated in brain, spleen, and liver during gamma radiation of mice. Arch. Biochem. Biophys. 244, 156-160.
- Laurie, S.H., Tancock, N.P., McGrath, S.P., Sanders, J., 1991. Influence of complexation on the uptake by plants of iron, manganese, copper and zinc: I. Effect of EDTA in a multimetal and computer simulation study. Exp. Bot. 42, 509-513.
- Lin, S., Shi, Q., Nix, F.B., Styblo, M., Beck, M.A., Herbin-Davis, K.M., Hall, L.L., Simeonsson, J.B., Thomas, D.J., 2002. A novel S-adenosyl-L-methionine:arsenic(III) methyltransferase from rat liver cytosol. Biol. Chem. 277(13), 10795-10803. doi:10.1074/jbc.M110246200
- Malanga, G., P?rez, A., Calvo, J., Puntarulo, S., 2009. The effect of seasonality on oxidative metabolism in the sea urchin Loxechinusalbus. Mar. Biol. 156, 763-770.
- National Research Council. National Academy of Sciences, 2013. Critical Aspects of EPA\'s IRIS Assessment of Inorganic Arsenic: Interim Report. Committee on Inorganic Arsenic; Board on Environmental Studies and Toxicology; Division on Earth and Life Studies; https://www.nap.edu/read/18594/chapter/1.
- Navoni, J.A., Olivera, N.M., Villaamil Lepori, E.C., 2010. Cuantificaci?n de ars?nicoporinyecci?n en flujo-generaci?n de hidruros-espesctrofotometr?a de absorci?nat?mica (IF-GH-EAA) previaderivatizaci?n con L-ciste?na. Validaci?n y comparaci?nintermetodol?gicautilizando dos t?cnicas de referencia. Toxicol. Argent. Acta 18(2), 29-38.
- Negishi, T., Matsunaga, Y., Kobayashi, Y., Hirano, S., Toshiro, T., 2013. The spectrum of circulating RNA: a window into systems toxicology. Sci. 132(2), 478-492. doi: 10.1093/toxsci/kft014
- Pastore, A., Federicia, G., Bertinib, E., Piemonteb, F., 2003. Analysis of glutathione: implication in redox and detoxification. Chim. Acta 333(1), 19-39.
- Piloni, N.E., Fermandez, V., Videla, L.A., Puntarulo, S, 2013. Acute iron overload and oxidative stress in brain. Toxicology 314(1), 174-182. doi: 10.1016/j.tox.2013.09.015
- Rao, M.V., Avani, G., 2004. Arsenic induced free radical toxicity in brain of mice. Indian J. Exp. Biol. 42(5), 495-498.
- Rezaei, M., Khodayar, M.J., Seydi, E., Soheila, A., Parsi, I.K., 2017. Acute, but not chronic, exposure to arsenic provokes glucose intolerance in rats: Possible roles for oxidative stress and the adrenergic pathway. J. Diabetes 41(3), 273-280. doi: 10.1016/j.jcjd.2016.10.008
- Rodr?guez, V.M., Jim?nez-Capdeville, M.E., Giordano, M., 2003. The effects of arsenic exposure on the nervous system. Lett. 145(1), 1-18.
- Rodriguez-Ariza, A., Toribio, F., L?pez-Barea, J., 1994. Rapid determination of glutathione status in fish liver using high-performance liquid chromatography and electrochemical detection. J. Chromatogr. B. Biomed. Appl. 656(2), 311-318.
- Soria, E.A., P?rez, R.D., Queralt, I., P?rez, C.A., Bongiovanni, G.A., 2017. Immunotoxicological effects of arsenic bioaccumulation on spatial metallomics and cellular enzyme response in the spleen of male Wistar rats after oral intake. Toxicol. Lett. 266, 65-73. doi: 10.1016/j.toxlet.2016.12.014
- Thomas, D.J., Styblo, M., Lin, S., 2001. The cellular metabolism and systemic toxicity of arsenic. Toxicol. Appl. Pharmacol. 176(2), 127-144. doi:10.1006/taap.2001.9258
- Tolins, M., Ruchirawat, M., Landrigan, P., 2014. The developmental neurotoxicity of arsenic: cognitive and behavioral consequences of early life exposure. Ann. Globl. Health. 80(4), 303-314. doi: 10.1016/j.aogh.2014.09.005
- Wang, T.S., Kuo, C.F., Jan, K.Y., Huang, H.M., 1996. Arsenite induces apoptosis in Chinese hamster ovary cells by generation of reactive oxygen species. J. Cell. Physiol. 169(2), 256-268. doi: 10.1002/(SICI)1097-4652(199611)169:2<256::AID-JCP5>3.0.CO;2-N
- Wasserman, G.A., Liu, X., Loiacono, N.J., Kline, J., Factor-Litvak, P., van Geen, A., Mey, J.L., Levy, D., Abramson, R., Schwartz, A., Graziano, J.H., 2014. A cross-sectional study of well water arsenic and child IQ in Maine schoolchildren. Environ. Health 13(1), 23-33. doi: 10.1186/1476-069X-13-23.
- Yamanaka, K., Hasegawa, A., Sawamura, R., Okada, S., 1989. Dimethylated arsenics induce DNA strand breaks in lung via the production of active oxygen in mice. Biochem. Biophys. Res. Commun. 165(1), 43-50.
- Yamanaka, K., Kato, K., Mizoi, M., An, Y., Nakanao, M., Hoshino, M., Okada, S., 2009. Dimethylarsine likely acts as a mouse-pulmonary tumor initiator via the production of dimethylarsine radical and/or its peroxy radical. Life Sci. 84(17-18), 627-33.
- Zamora, P.L., Rockenbauer, A., Villamena, F.A., 2014. Radical model of arsenic(III) toxicity: theoretical and EPR spin trapping studies. Chem. Res. Toxicol. 27(5), 765-774.
- Zhang, T.L., Gao, Y.X., Lu, J.F., Wang, K., 2000. Arsenite, arsenate and vanadate affect human erythrocyte membrane. J. Inorg. Biochem. 79(1-4), 195-203.
[Julian G Bonetto, Edda Villaamil-Lepori and Susana Puntarulo. (2017); OXIDATIVE BALANCE IN BRAIN AFTER EXPOSURE TO ARSENIC IN EX VIVO AND IN VIVO MODELS. Int. J. of Adv. Res. 5 (Oct). 41-51] (ISSN 2320-5407). www.journalijar.com
Universidad de Buenos Aires, Viamonte 444 CUIT 30-54666656-1