22Oct 2017

IN VITRO SYNTHESIS OF LIGNIN-RESILIN BIOCOMPOSITES.

  • The Robert H. Smith Faculty of Agriculture, Food and Environment, the Hebrew University of Jerusalem, Rehovot 7610001, Israel.
  • Futuragene Ltd, Rehovot, Israel.
  • Abstract
  • Keywords
  • References
  • Cite This Article as
  • Corresponding Author

Lignin is one of the most abundant biopolymers in nature but is currently underused. Extensive research is to improve the market value of lignin and its utilization. This study presents an approach to alter the mechanical properties of lignin through its combination with recombinant resilin, a rubber-like protein. Different mass ratios of resilin were added to coniferyl alcohol, together with horseradish peroxidase and hydrogen peroxide, to generate a crosslinked lignin-like?resilin biocomposite, where the lignin-like component, the so-called dehydrogenation polymer, is the product of coniferyl alcohol crosslinking. Fourier transform infrared spectroscopy and western blot analysis indicated crosslinking of the resilin protein to dehydrogenation polymer. We show that resilin binding to dehydrogenation polymer leads to a reduction in the polymer particles size as well as an increase in mechanical stiffness. This study provides insight into the mechanisms of the in vivo and in vitro crosslinking of tyrosine rich structural proteins to lignin. The crosslinked lignin-protein complex may potentially impart improved properties to lignin and to the entire plant.


  1. Van Acker R, Vanholme R, Storme V, Mortimer JC, Dupree P, Boerjan W (2013) Lignin biosynthesis perturbations affect secondary cell wall composition and saccharification yield in Arabidopsis thaliana. Biotechnol Biofuels 6: 46
  2. Baucher M, Halpin C, Petit-Conil M, Boerjan W (2003) Lignin: genetic engineering and impact on pulping. Crit Rev Biochem Mol Biol 38: 305?50
  3. Bennet-Clark HC, Lucey ECA (1967) The jump of the flea: a study of the energetics and a model of the mechanism. J Exp Biol 47: 59?67
  4. Bochicchio B, Pepe A, Tamburro AM (2008) Investigating by CD the molecular mechanism of elasticity of elastomeric proteins. Chirality 20: 985?94
  5. Boerjan W, Ralph J, Baucher M (2003) Lignin biosynthesis. Annu Rev Plant Biol 54: 519?46
  6. Burrows M, Sutton GP (2012) Locusts use a composite of resilin and hard cuticle as an energy store for jumping and kicking. J Exp Biol 215: 3501?3512
  7. Calvo-Flores FG, Dobado JA (2010) Lignin as renewable raw material. ChemSusChem 3: 1227?1235
  8. Carrillo F, Gupta S, Balooch M, Marshall SJ, Marshall GW, Pruitt L, Puttlitz CM (2005) Nanoindentation of polydimethylsiloxane elastomers: effect of crosslinking, work of adhesion, and fluid environment on elastic modulus. J Mater Res 20: 2820?2830
  9. Cong F, Diehl BG, Hill JL, Brown NR, Tien M (2013) Covalent bond formation between amino acids and lignin: cross-coupling between proteins and lignin. Phytochemistry 96: 449?56
  10. Diehl BG, Brown NR (2014) Lignin cross-links with cysteine- and tyrosine-containing peptides under biomimetic conditions. J Agric Food Chem 62: 10312?10319
  11. Diehl BG, Watts HD, Kubicki JD, Regner MR, Ralph J, Brown NR (2014) Towards lignin-protein crosslinking: amino acid adducts of a lignin model quinone methide. Cellulose 21: 1395?1407
  12. Donaldson LA (2001) Lignification and lignin topochemistry ? an ultrastructural view. Phytochemistry 57: 859?873
  13. Freudenberg K, Neish AC (1968) Constitution and biosynthesis of lignin, 1st ed. Springer-Verlag, New York
  14. Kadla J, Kubo S, Venditti RA, Gilbert RD, Compere AL, Griffith W (2002) Lignin-based carbon fibers for composite fiber applications. Carbon N Y 40: 2913?2920
  15. Liang H, Frost CJ, Wei X, Brown NR, Carlson JE, Tien M (2008) Improved sugar release from lignocellulosic material by introducing a tyrosine-rich cell wall peptide gene in poplar. CLEAN - Soil, Air, Water 36: 662?668
  16. Martius C (1992) Density , humidity , and nitrogen content of dominant wood species of floodplain forests ( vfirzea ) in Amazonia. Holz als Roh-und Werkst 50: 300?303
  17. Mcdougall GJ, Stewart D, Morrison IM (1996) Tyrosine residues enhance cross-linking of synthetic proteins into lignin-like dehydrogenation products. Phytochemistry 41: 43?47
  18. McGann CL, Levenson EA, Kiick KL (2013) Resilin-based hybrid hydrogels for cardiovascular tissue engineering. Macromolecules 214: 203?213
  19. Michels J, Vogt J, Gorb SN (2012) Tools for crushing diatoms ? opal teeth in copepods feature a rubber-like bearing composed of resilin. Sci Rep 2: 1?35
  20. Qin G, Hu X, Cebe P, Kaplan DL (2012) Mechanism of resilin elasticity. Nat Commun 3: 1003
  21. Qin G, Lapidot S, Numata K, Hu X, Meirovitch S, Dekel M, Podoler I, Shoseyov O, Kaplan DL (2009) Expression, cross-linking, and characterization of recombinant chitin binding resilin. Biomacromolecules 10: 3227?3234
  22. Qin G, Rivkin A, Lapidot S, Hu X, Preis I, Arinus SB, Dgany O, Shoseyov O, Kaplan DL (2011) Recombinant exon-encoded resilins for elastomeric biomaterials. Biomaterials 32: 9231?9243
  23. Ralph J, Lundquist K, Brunow G, Lu F, Kim H, Schatz PF, Marita JM, Hatfield RD, Ralph S a., Christensen JH, et al (2004) Lignins: natural polymers from oxidative coupling of 4-hydroxyphenyl- propanoids. Phytochem Rev 3: 29?60
  24. Rivkin A, Abitbol T, Nevo Y, Verker R, Lapidot S, Komarov A, Veldhuis SC, Zilberman G, Reches M, Cranston ED, et al (2015) Bionanocomposite films from resilin-CBD bound to cellulose nanocrystals. Ind Biotechnol 11: 44?58
  25. Saito T, Brown RH, Hunt MA, Pickel DL, Pickel JM, Messman JM, Baker FS, Keller M, Naskar AK (2012) Cutting-edge research for a greener sustainable future Turning renewable resources into value-added polymer: development of lignin-based thermoplastic. Green Chem 1412: 1463?9262
  26. Sanami M, Shtein Z, Sweeney I, Sorushanova A, Rivkin A, Miraftab M, Shoseyov O, O?Dowd C, Mullen AM, Pandit A, et al (2015) Biophysical and biological characterisation of collagen/resilin-like protein composite fibres. Biomed Mater 10: 65005
  27. Showalter AM (1993) Structure and function of plant cell wall proteins. Plant Cell 5: 9?23
  28. Simmons BA, Loqu? D, Ralph J (2010) Advances in modifying lignin for enhanced biofuel production. Curr Opin Plant Biol 13: 313?20
  29. Tan SSY, MacFarlane DR, Upfal J, Edye LA, Doherty WOS, Patti AF, Pringle JM, Scott JL (2009) Extraction of lignin from lignocellulose at atmospheric pressure using alkylbenzenesulfonate ionic liquid. Green Chem 11: 339?345
  30. Tanahashi M, Higuchi T (1981) Dehydrogenative polymerization of monolignols by peroxidase and H2O2 in a dialysis tube. Wood Res 67: 29?42
  31. Vanholme R, Morreel K, Ralph J, Boerjan W (2008) Lignin engineering. Curr Opin Plant Biol 11: 278?85
  32. Verker R, Rivkin A, Zilberman G, Shoseyov O (2014) Insertion of nano-crystalline cellulose into epoxy resin via resilin to construct a novel elastic adhesive. Cellulose 21: 4369?4379
  33. Weis-Fogh T (1960) A rubber-like protein in insect cuticle. J Exp Biol 37: 887?907
  34. Weng J-K, Chapple C (2010) The origin and evolution of lignin biosynthesis. New Phytol 187: 273?285
  35. Young D, Bennet-Clark H (1995) The role of the tymbal in cicada sound production. J Exp Biol 198: 1001?20.

[Itan Preis, Iftach Birger, Amit Rivkin, Tal Ben Shalom, Miron Abramson and Oded Shoseyov. (2017); IN VITRO SYNTHESIS OF LIGNIN-RESILIN BIOCOMPOSITES. Int. J. of Adv. Res. 5 (Oct). 1163-1171] (ISSN 2320-5407). www.journalijar.com


Itan Preis
The Robert H. Smith Faculty of Agriculture, Food and Environment, the Hebrew University of Jerusalem, Rehovot 7610001, Israel

DOI:


Article DOI: 10.21474/IJAR01/5634      
DOI URL: https://dx.doi.org/10.21474/IJAR01/5634