30Jan 2017

EFFECT OF FRICTION STIR PROCESSING PARAMETERS ON THE TENSILE STRENGTH OF SURFACE COMPOSITE ALUMINUM ALLOY.

  • Faculty of Engineering, King Abdul Aziz University, KSA.
  • Faculty of Engineering (Shoubra), Benha University, Egypt.
Crossref Cited-by Linking logo
  • Abstract
  • Keywords
  • References
  • Cite This Article as
  • Corresponding Author

In the current study, the surface composite sheet of AA2024/al203 has been fabricated using friction stir processing technique. The processing parameters during fabrication process; such as rotation speed, travel speed and number of passes have been investigated. The number of passes has a significant effect on the mechanical properties through tensile test. The results revealed that tensile strength improved with increasing passes number.


  1. Hussain and S. A. P. Quadri, \"Evaluation of parameters of friction stir welding for aluminum AA6351 alloy,\" International Journal of Engineering Science and Technology, vol. 2(10), pp. 5977-5984, 2010.
  2. JAYARAMAN and V. BALASUBRAMANIAN, \"Effect of process parameters on tensile strength of friction stir welded cast A356 aluminium alloy joints,\" Transaction of Nonferrous Metal scocity of china, vol. 23, p. 605?615, 2013. S.
  3. Rajakumar and V. Balasubramanian, \"Establishing relationships between mechanical properties of aluminium alloys,\" Materials and Design, 40, p. 17–35, 2012.
  4. Devaraju , A. Kumar and A. Kumaraswamy, \"Influence of reinforcements (SiC and Al2O3) and rotational speed on wear and mechanical properties of aluminum alloy 6061-T6 based surface hybrid composites produced via friction stir processing,\" Materials and Design, 51, p. 331–341, 2013.
  5. N. S. Y.J. Kwon, \"Mechanical properties of fine-grained aluminum alloy produced by friction stir process,\" Scripta Materialia, vol. 49, p. 785–789, 2003.
  6. G. G.Venkateswarlu, \"Effect of Rotational Speed on Microstructure and Mechanical Properties of Friction Stir Processed Mg AZ31B Alloy,\" International Conference On Advances In Engineering, Science And Management, pp. 323- 327, 2012.
  7. S. Salih, H. Ou , W. Sun and D. G. McCartn, \"A review of friction stir welding of aluminium matrix composites,\" Materials and Design, vol. 86, p. 61–71, 2015.
  8. J. LIU, \"Friction stir welding characteristics of 2017-T351 aluminum alloy sheet,\" JOURNAL OF MATERIALS SCIENCE, vol. 40, p. 3297 – 3299, 2005.
  9. Moshwan , F. Yusof and M. A. Hass, \"Effect of tool rotational speed on force generation, microstructure and mechanical properties of friction stir welded Al–Mg–Cr–Mn (AA 5052-O) alloy,\" Materials and Design, vol. 66, p. 118–128, 2015.
  10. H. Wais, J. . M. Salman and A. . O. Al-Roubaiy, \"Effect Of Friction Stir Processing On Mechanical Properties And Microstructure Of The Cast Pure Aluminum,\" International Journal Of Scientific & Technology Research, vol. 2, no. 12, pp. 154-163, 2013.
  11. R. Mahmoud, K. Ikeuchi and M. Takahashi, \"Fabrication of SiC particle reinforced composite on aluminium surface by friction stir processing,\" Science and Technology of Welding and Joining, vol. 13, no. 7, pp. 607-608, 2008.
  12. K. Lim, T. Shibayanagi and A. P. Gerlich, \"Synthesis of multi-walled CNT reinforced aluminium alloy composite via friction stir processing,\" Materials Science and Engineering A, vol. 507, p. 194–199, 2009.
  13. Asadi, M. K. Besharati Givi, K. Abrinia, M. Taherishargh and R. Salekrostam, \"Effects of SiC Particle Size and Process Parameters on the Microstructure and Hardness of AZ91/SiC Composite Layer Fabricated by FSP,\" Journal of Materials Engineering and Performance, vol. 20, no. 9, p. 1554–1562, 2011.
  14. Thangarasu, N. Murugan, I. Dinaharan and S. J. Vijay, \"Effect of tool rotational speed on microstructure and microhardness of AA6082/TiC surface composites using friction stir processing,\" Applied Mechanics and Materials, 592-594, pp. 234-239, 2014.
  15. Kurta, I. Uygurb and E. Cetec, \"Surface modification of aluminium by friction stir processing,\" Journal of Materials Processing Technology, 211, no. 3, p. 313–317, 2011.
  16. Azizieh, A. H. Kokabi and P. Abachi, \"Effect of rotational speed and probe profile on microstructure and hardness of AZ31/Al2O3 nanocomposites fabricated by friction stir processing,\" Materials and Design, vol. 32, p. 2034–2041, 2011.
  17. Sathiskumar, . I. Dinaharan, N. Murugan and S. J. VIJAY, \"Influence of tool rotational speed on microstructure and sliding wear behavior of Cu/B4C surface composite synthesized by friction stir processing,\" Transaction of Nonferrous Metal scocity of china, vol. 24, p. 95?102, 2014.
  18. T. A. R. Rebecca Brown, \"Multi-pass friction stir welding in alloy 7050-T7451: Effects on weld response variables and on weld properties,\" Materials Science and Engineering A, Vols. 513-514, p. 115–121, 2007.
  19. ,. M. ,. A. S. Sahraeinejad, \"Fabrication of metal matrix composites by friction stir processing with different Particles and processing parameters,\" Materials Science & Engineering A, vol. 626, p. 505–513, 2015.
  20. SarkariKhorrami, M. N. Kazeminezhad and A. H. Kokabi, \"The effect of SiC nanoparticles on the friction stir processing of severely,\" Materials Science & Engineering A, vol. 602, p. 110–118, 2014.
  21. Panigrahia, K. Kumara and W. Yuana, \"Transition of deformation behavior in an ultrafine grained magnesium alloy,\" Materials Science and Engineering A, vol. 549, p. 123– 127, 2012.
  22. Yuan, S. Panigrahi and R. Mishra, \"Influence of grain size and texture on Hall–Petch relationship for a magnesium alloy,\" Scripta Materialia, vol. 65, p. 994–997, 2011.
  23. Mishra, Rajiv Sharan, Partha Sarathi and N. Kumar, Friction Stir Welding and Processing, Switzerland: Springer International Publishing, 2014.
  24. Barmouz and M. Kazem Besharati Givi, \"Fabrication of in situ Cu/SiC composites using multi-pass friction stir processing: Evaluation of microstructural, porosity, mechanical and electrical behavior,\" Composites: Part A, vol. 42, p. 1445–1453, 2011.
  25. W. W. ,. Z. M. Z.Y. Liu, \"Analysis of carbon nanotube shortening and composite strengthening in carbon nanotube/aluminum composites fabricated by multi-pass friction stir processing,\" carbon, vol. 69, p. 2 6 4 –2 7 4, 2014.
  26. Johannes and R. Mishra, \"Multiple passes of friction stir processing for the creation of superplastic 7075 aluminum,\" Materials Science and Engineering A, vol. 464, p. 255–260, 20017.
  27. Z. Y. Z. G. C. Y. G. M. L. J. Z. Rui Yang, \"Effect of multi-pass friction stir processing on microstructure and mechanical properties of Al3Ti/A356 composites,\" Materials Characterization, vol. 106, p. 62–69, 2015.
  28. Da-Tong, X. Feng and Z. Wei-Wen, \"Superplasticity of AZ31 magnesium alloy prepared by friction stir processing,\" Trans. Nonferrous Met. Soc. China, vol. 21, p. 1911?1916, 2011.
  29. Cavaliere and P. De Marco, \"Superplastic behaviour of friction stir processed AZ91 magnesium alloy produced by high pressure die cast,\" Journal of Materials Processing Technology, vol. 184, p. 77–83, 2007.
  30. Tutunchilar, M. Besharati Givi and M. Haghp, \"Eutectic Al–Si piston alloy surface transformed to modified hypereutectic alloy via FSP,\" Materials Science and Engineering A, vol. 534, p. 557– 567, 2012.

[Essam Moustafa, Samah Mohammed, Sayed Abdel-Wanis,Tamer Mahmoud and El-Sayed El-Kady. (2017); EFFECT OF FRICTION STIR PROCESSING PARAMETERS ON THE TENSILE STRENGTH OF SURFACE COMPOSITE ALUMINUM ALLOY. Int. J. of Adv. Res. 5 (Jan). 2061-2065] (ISSN 2320-5407). www.journalijar.com


Essam Bahgat Ezzat Moustafa
lecturer at Mechanical Engineering Department, Faculty of Engineering, King Abdul Aziz University, KSA

DOI:


Article DOI: 10.21474/IJAR01/2977      
DOI URL: http://dx.doi.org/10.21474/IJAR01/2977