10Aug 2017

NONLINEAR STIMULATION TECHNOLOGIES TO ENHANCE THE EFFICIENCY OF THE THERAPY OF BRAIN DISORDERS AND EFFICACY OF COGNITIVE TRAINING.

  • Professor of Pathophysiology, Dr. Biol. Sci., Head of the Department of Clinical Physiology of Vision,Federal State Budgetary Institution ?Moscow Helmholtz Research Institute of Eye Diseases", Ministry of Healthcare of Russian Federation, 14/19 Sadovaya-Chernogryazskaya Street, Moscow, 105062, Russian Federation.
  • Abstract
  • Keywords
  • References
  • Cite This Article as
  • Corresponding Author

The development and maintenance of the complex structure of neural networks and the activity of the brain we recently linked with a complexity of visual and other environmental signals accompanying the person during his life. From this theory, it follows that the simplification of dynamics of environmental signals may be associated with the abnormal development and aging of the brain, or may accelerate the already existing neurological pathology. The use of nonlinear stimulation therapy can improve the restoration of the structure and function of the brain, including in neurodegenerative pathology by regulating the potential of neuroplasticity. In psychological rehabilitation, it may produce effects via the brainwave entrainment helping to restore the dynamics of the neuronal activity. We substantiate the possibility of application of technologies of nonlinear stimulation of the brain to enhance the efficiency of the therapy of neurological disorders and to preserve the mental activity of aging persons. Programs of nonlinear stimulation of the brain in healthy individuals can be self-contained methods of the cognitive training, including stress conditions. Besides, we believe that elements of nonlinear visual and audio stimulation should also be applied in new modifications of the existing brain training techniques because that can significantly enhance the efficacy of training games and programs of the brain stimulation.


  1. Adrian, E.D. and Matthews, B.H. (1934): The Berger rhythm: Potential changes from the occipital lobes of man. , 57:355-385.
  2. Alwis, D.S. and Rajan, R. (2014): Environmental enrichment and the sensory brain: the role of enrichment in remediating brain injury. Syst. Neurosci., Sep 2; 8:156. doi: 10.3389/fnsys.2014.00156. eCollection 2014.
  3. Anderson, J.S., Lampl, I., Gillespie, D.C. and Ferster, D. (2000): The contribution of noise to contrast invariance of orientation tuning in cat visual cortex. Science., 290(5498): 1968?1972. DOI: 10.1126/science.290.5498.1968
  4. Andreou, C., Nolte, G., Leicht, G., Polomac, N., Hanganu-Opatz, I. L., Lambert, M., Engel, A.K. andMulert, C. 92014): Increased resting-state gamma-band connectivity in first-episode schizophrenia. Bull., 41(4): 930-939. doi: 10.1093/schbul/sbu121.
  5. Antal, A. and Herrmann, C.S. (2016): Transcranial alternating current and random noise stimulation: possible mechanisms. Neural Plast.,
  6. Arenas, A., D?az-Guilera, A., Kurths, J., Moreno Y. and Zhou, C. (2008): Synchronization in complex networks. Physics Reports., 469(3): 93?153. http://dx.doi.org/10.1016/j.physrep.2008.09.002
  7. Babiloni, C., Lizio, R., Marzano, N., Capotosto, P., Soricelli, A., Triggiani, A. et al. (2016): Brain neural synchronization and functional coupling in Alzheimer's disease as revealed by resting state EEG rhythms. J. Psychophysiol., 103:88-102. doi: 10.1016/j.ijpsycho.2015.02.008. Epub 2015 Feb 7.
  8. Bak, P.,Tang, C. and Wiesenfeld, K. (1987): Self-organized criticality: An explanation of the 1/f noise. Phys Rev Lett.,?59(4): 381-384.
  9. Balasubramanian, K. andNagaraj, N. (2016): Aging and cardiovascular complexity: effect of the length of RR tachograms. PeerJ, Dec 6; 4:e2755. eCollection 2016. ?https://doi.org/10.7717/peerj.2755
  10. Barlett, E.L. (2013): The organization and physiology of the auditory thalamus and its role in processing acoustic features important for speech perception. Brain Lang., 126(1): 29?48. doi:? 1016/j.bandl.2013.03.003
  11. Barlow, J.S. (1960) Rhythmic activity induced by photic stimulation in relation to intrinsical activity of the brain in man. Electroencephalography Clin. Neurophysiol., 12: 317-326.
  12. Baroncelli, L., Bonaccorsi, J., Milanese, M., Bonifacino, T., Giribaldi, F., Manno, I., et al. (2012): Enriched experience and recovery from amblyopia in adult rats: impact of motor, social and sensory components. Neuropharmacology., 62:2388?2397. doi: 10.1016/j.neuropharm.2012.02.010
  13. Baroncelli, L., Braschi, C., Spolidoro, M., Begenisic, T., Sale, A. and Maffei, L. (2010): Nurturing brain plasticity: impact of environmental enrichment. Cell Death Differ., 17(7):1092?1103. doi: 10.1038/cdd.2009.193. Epub 2009 Dec 18.
  14. Bengoetxea, H., Ortuzar, N., Bulnes, S., Rico-Barrio, I., Vicente Lafuente, J. and Argando?a, E.G. (2012): Enriched and deprived sensory experience induces structural changes and rewires connectivity during the postnatal development of the brain. Neural Plast., doi:10.1155/2012/ 305693
  15. Bhattacharya, J. and Petsche, H. (2005): Drawing on mind's canvas: differences in cortical integration patterns between artists and non-artists. Human Brain Mapping., 26:1?14. DOI: 1002/hbm.20104
  16. Bigerelle, M. and Iost,.A. (2000): Fractal dimension and classification of music. Chaos Solitons Fractals., 11(14): 2179-2192. DOI: 10.1016/S0960-0779(99)00137-X
  17. Bilder, R.M. and Knudsen, K.S. (2014): Creative cognition and systems biology on the edge of chaos. Psychol., 30 Sept 2014. http://dx.doi.org/10.3389/fpsyg.2014.01104
  18. Black, J.E. (1998): How a child builds its brain: some lessons from animal studies and neural plasticity. Preventive Medicine, 27(2): 168-171. doi:10.1006/pmed.1998.0271
  19. Boccaletti, S., Kurths, J., Osipov, G., Valladares, D.L. and Zhou, C.S. (2002): The synchronization of chaotic systems. Physics Reports., 366(1-2):1?101. http://dx.doi.org/10.1016/S0370-1573(02)00137-0
  20. Bolwerk, A., Mack-Andrick, J., Lang, F.R., D?rfler, A. and Maih?fner, C. (2014): How art changes your brain: differential effects of visual art production and cognitive art evaluation on functional brain connectivity. PLOS ONE., 9(12): e116548. Published: July 1, 2014 http://dx.doi.org/10.1371/journal.pone.0101035
  21. Bonaconsa, M., Colavito, V., Pifferi, F., Aujard, F., Schenker, E., Dix, S. et al. (2013): Cell clocks and neuronal networks: neuron ticking and synchronization in aging and aging-related neurodegenerative disease. Curr. Alzheimer Res., 10(6): 597-608.
  22. Buonomano, D.V. and Merzenich, M.M. (1998): Cortical plasticity: from synapses to maps. Rev. Neurosci., 21: 149?186. doi: 10.1146/annurev.neuro.21.1.149
  23. Buzs?ki, G. and Draguhn, A. (2004): Neuronal oscillations in cortical networks. Science. 2004;304:1926?1929. doi: 10.1126/science.1099745
  24. Carcea, I. and Froemke, R.C. (2013): Cortical plasticity, excitatory-inhibitory balance, and sensory perception. Prog Brain Res., 207: 65?90. doi:10.1016/B978-0-444-63327-9.00003-5
  25. Cassilhas, R.C., Lee, K.S., Fernandes, J., Oliveira, M.G.,Tufik, S.,?Meeusen, R. and?de Mello, M.T. (2011):? Spatial memory is improved by aerobic and resistance exercise through divergent molecular mechanisms. Neuroscience., 202: 309?317. doi: 10.1016/j.neuroscience.2011.11.029. Epub 2011 Dec 2.
  26. Castellanos, N.P., Pa?l, N., Ord??ez, V.E., Demuynck, O., Bajo, R., Campo, P. et al. (2010): Reorganization of functional connectivity as a correlate of cognitive recovery in acquired brain injury. Brain., 133(Pt8): 2365?2381. doi:10.1093/brain/awq174
  27. Chen, J.L., Flanders, G.H., Lee, W.C., Lin, W.C. and Nedivi, E. (2011)?: Inhibitory dendrite dynamics as a general feature of the adult cortical microcircuit. J Neurosci., 31:12437-12443. doi: 10.1523/JNEUROSCI.0420-11.2011.
  28. Cheng, W., Law, P.K., Kwan, H.C. and Cheng, R.S.S. (2014): Stimulation therapies and the relevance of fractal dynamics to the treatment of diseases. Open Journal of Regenerative Medicine, 3: 73-94. http://dx.doi.org/10.4236/ojrm.2014.34009
  29. Costa, M., Priplata, A.A., Lipsitz, L.A., Wu, Z., Huang, N.E., Goldberger, A.L. and Peng C.K. (2007): Noise and poise: Enhancement of postural complexity in the elderly with a stochastic-resonance-based therapy. Europhys. Lett., 77(6):68008. doi:?1209/0295-5075/77/68008
  30. Crowell, A.L., Ryapolova-Webb, E.S., Ostrem, J.L., Galifianakis, N.B., Shimamoto, S., Lim, D. A., et al. (2012): Oscillations in sensorimotor cortex in movement disorders: an electrocorticography study. Brain, 135(Pt.2): 615?630. doi: 10.1093/brain/awr332
  31. Crownover, R.M. (1995): Introduction to Fractals and Chaos, London: Jones and Bartlett Publishers, pp. 306.
  32. Dauwels, J., Srinivasan, K., Reddy, M.R., Musha, T., Vialatte, F.-B., Latchoumane, C. Jeong, J. and Cichocki, A. (2011)?: Slowing and Loss of Complexity in Alzheimer?s EEG: Two Sides of the Same Coin? J. Alzheim. Dis. 2011; Volume 2011, Article ID 539621, 10 pages. doi:10.4061/2011/539621
  33. Dey, S,Proulx, S.R. and?Teot?nio, H. (2016): Adaptation to temporally fluctuating environments by the evolution of maternal effects. PLoS Biol.?Feb 24, 14(2):e1002388. doi: 10.1371/journal.pbio.1002388. eCollection 2016.
  34. Dockx, K., Bekkers, E.M.J., Van den Bergh, V., Ginis, P., Rochester, L., Hausdorff, J.M. et al. (2016): Virtual reality for rehabilitation in Parkinson?s disease. Cochrane Database of Systematic Reviews. Issue 12. Art. No: CD010760. DOI: 10.1002/14651858.CD010760.pub2.
  35. Dragoi, V., Rivadulla, C. and Sur, M. (2001): Foci of orientation plasticity in visual cortex. Nature. 411:80-86. doi:0.1038/35075070
  36. Engel, A. K., Fries, P., and Singer, W. (2001). Dynamic predictions: oscillations and synchrony in top-down processing.?Nat. Rev. Neurosci.?2, 704?716. doi: 10.1038/35094565
  37. Eysel, U.T. (2009): Adult Cortical Plasticity. Bochum, Germany: Ruhr-University Bochum. Available: http://brain.phgy.queensu.ca/pare/assets/Circuits_supp.pdf
  38. Feder, J. (1988): Fractals (Physics of Solids and Liquids). Berlin: Springer, 284P.
  39. Fox, P.T. and Raichle, M.E. (1985): Stimulus rate determines regional blood flow in striate cortex. Neurol., 17:303-305.
  40. Freiherr, J., Lundstrom, J.N., Habel, U. and Reetz K. (2013): Multisensory integration mechanisms during aging. Hum. Neurosci., 2013;7:863. doi: 10.3389/fnhum.2013.00863
  41. Geula, C. (1998): Abnormalities of neural circuitry in Alzheimer's disease: hippocampus and cortical cholinergic innervation. Neurology., 51(Suppl 1): S18-29; discussion S65-67. doi: http:/​/​dx.​doi.​org/​10.​1212/​WNL.​51.​1_Suppl_1.​S18
  42. Gilbert, C.D. and?Li W. (2012)?: Adult visual cortical plasticity. Neuron., 75(2):250-264. doi: 10.1016/j.neuron.2012.06.030.
  43. Goldberger, A.L. (1997): Fractal variability versus pathologic periodicity: complexity loss and stereotypy in disease. Biol. Med., 40: 543-561. doi: 10.1353/pbm.1997.0063
  44. Goldberger, A.L., Amaral, L.A.N., Hausdorff, J.M., Ivanov, P.Ch., Peng, C.-K. and Stanley H.E. (2002): Fractal dynamics in physiology: Alterations with disease and aging. Natl. Acad. Sci. U.S.A., 99 (Suppl 1): 2466-2472. doi:?10.1073/pnas.012579499
  45. Gonz?lez, J.A. and Pino (2000): Chaotic and stochastic functions. Physica A: Statistical Mechanics and its Applications. 276(3?4): 425-440. 15 February. http://dx.doi.org/10.1016/S0378-4371(99)00423-9
  46. Green, C.S. and Bavelier D. (2007): Action-video-game experience alters the spatial resolution of vision. Sci., 18(1): 88?94. doi: 10.1111/j.1467-9280.2007.01853.x
  47. Hallett, M. (2007)?: Transcranial magnetic stimulation: a primer.?Neuron., 55?:187?199. doi: 10.1016/j.neuron.2007.06.026
  48. Halley, J.M. (1996): Ecology, evolution and 1/f-noise. Trends Ecol. Evol., 11: 33-37.
  49. Halley, J.M. and Inchausti, P. (2004): The increasing importance of 1/f noise as models of ecological variability. Fluctuation and Noise Letters. 4(2):R1?R26.
  50. Hamilton, G.F., Phodes, J.S. (2015): Exercise Regulation of Cognitive Function and Neuroplasticity in the Healthy and Diseased Brain. In: Progress in Molecular Biology and Translational Science. Elsevier Inc., Volume 135, pp. 381-406. http://dx.doi.org/10.1016/bs.pmbts.2015.07.004
  51. Hausdorff, J.M., Peng, C-.K., Ladin, Z., Wei, J.Y. and Goldberger A.L. (1995): Is walking a random walk? Evidence for long-range correlations in stride interval of human gait. Appl. Physiol., 78: 349?358.
  52. Hazard, C., Kimport, C. and Johnson, D. (1998-1999): Fractal Music. Research Project. http://www.tursiops.cc/fm
  53. Heinrichs-Graham, E., Wilson, T.W., Santamaria, P.M., Heithoff, S.K., Torres-Russotto, D., Hutter-Saunders, J.A.L., et al. (2014): Neuromagnetic evidence of abnormal movement-related beta desynchronization in Parkinson?s disease. Cortex., 24:2669?2678. doi: 10.1093/cercor/bht121
  54. Hensch, T. (2005): Critical period plasticity in local cortical circuitries. Rev. Neurosci., 6:877?888. doi:10.1038/nrn1787
  55. Herholz, S.C. and Zatorre, R.J. (2012): Musical training as a framework for brain plasticity: behavior, function, and structure. Neuron., 76:486-502. DOI: http://dx.doi.org/10.1016/j.neuron.2012.10.011
  56. Hove, M.J., Suzuki, K., Uchitomi, H., Orimo, S. and Miyake Y. (2012): Interactive Rhythmic Auditory Stimulation Reinstates Natural 1/fTiming in Gait of Parkinson's Patients. PLoS ONE 7(3): e32600. doi:10.1371/journal.pone.0032600
  57. Hs?, K.J. and Hs?, A. (1990): Fractal geometry of music. Proc. Natl. Acad. Sci. U.S.A., 87: 938?941. doi: 10.1073/pnas.87.3.938
  58. Hs?, K.J. and Hs?, A. (1991): Self-similarity of the 1/f Noise called music. Proc. Natl. Acad. Sci. U.S.A. 88:3507?3509. doi: 10.1073/pnas.88.8.3507
  59. Hu, K., van Someren, E.J., Shea, S.A. and Scheer, F.A. (2009): Reduction of scale invariance of activity fluctuations with aging and Alzheimer's disease: involvement of the circadian pacemaker. Natl. Acad. Sci. U.S.A., 106:2490-2494. DOI:
  60. 10.1073/pnas.0806087106Huang, T.L. and Charyton, C. (2008): A comprehensive review of the psychological effects of brainwave entrainment.? Altern. Ther. Health. Med., 14(5):38-50.
  1. Huang, Y.-Z., Edwards, M.J., Rounis, E., Bhatia, K.P. and Rothwell, J.C. (2004): Theta burst stimulation of the human motor cortex.?Neuron., 45:201?206. doi: 10.1016/j.neuron.2004.12.033
  2. Hubel, D.H. and Wiesel, T.N. (1961): Integrative action in the cat?s lateral geniculate body. Physiol., 155:385?98.
  3. Hubel, D.H. and Wiesel, T.N. (1970): The period of susceptibility to the physiological effects of unilateral eye closure in kittens. J. Physiol., 206: 419?436. doi: 10.1113/jphysiol.1970.sp009022
  4. Hummel, F. and Gerloff, C. (2005): Larger interregional synchrony is associated with greater behavioral success in a complex sensory integration task in humans. Cortex.?2005; 15: 670?678. doi: 10.1093/cercor/bhh170
  5. Hummel, F.C. and Cohen, L.G. (2005): Drivers of brain plasticity.? Opin. Neurol., 18: 667?674. doi: 10.1097/01.wco.0000189876.37475.42
  6. Hunt, N., McGrath, D. and Stergiou, N. (2014): The influence of auditory-motor coupling on fractal dynamics in human gait. Rep., 4: 5879, doi: 10.1038/srep05879.
  7. Iannaccone, P.M. and Khokha, M.K. (1996): Fractal Geometry in Biological Systems: An Analytical Approach. BocaRaton, FL: CRC Press, 384p.
  8. Jausovec, N., Jausovec, K. and Gerlic, I. (2006): The influence of Mozart's music on brain activity in the process of learning. Neurophysiol., 117(12): 2703-2314. doi:10.1016/j.clinph.2006.08.010
  9. Jenkins, J.S. (2001): The Mozart effect. R. Soc. Med., 94(4): 170?172.
  10. Jeong, J. (2004): EEG dynamics in patients with Alzheimer's disease. Clin Neurophysiol., 115(7): 1490-1505. DOI: 1016/j.clinph.2004.01.001
  11. Johannesen, J.K., Kieffaber, P.D., O?Donnell, B.F., Shekhar, A., Evans, J.D. and Hetrick, W.P. (2005): Contributions of subtype and spectral frequency analyses to the study of P50 ERP amplitude and suppression in schizophrenia.? Res., 78:269?284. doi: 10.1016/j.schres.2005.05.022
  12. Katz, L.C. and Shatz, C.J. (1996): Synaptic activity and the construction of cortical circuits. Science., 274: 1133?1138.
  13. Kelly, K.R., McKetton, L., Schneider, K.A., Gallie, B.L. and Steeves, J.K.E. (2014): Altered anterior visual system development following early monocular enucleation. Neuroimage Clin., 4: 72?81.
  14. Kitzbichler, M.G., Smith, M.L., Christensen, S.R. and Bullmore E. (2009): Broadband Criticality of Human Brain Network Synchronization. PLoS Comput Biol., 5(3): e1000314. http://dx.doi.org/10.1371/journal.pcbi.1000314
  15. Kramer, A.F., Bherer, L., Colcombe, S.J., Dong, W. and Greenough, W.T. (2004): Environmental influences on cognitive and brain plasticity during aging. Gerontol. A. Biol. Sci. Med. Sci., 59(9):M940?57.
  16. Kraus, N. and White-Schwoch, T. (2014): Music training: Lifelong investment to protect the brain from aging and hearing loss. Acoustics Australia. 42(2):117-123.
  17. Krawinkel, L.A., Engel K. and Hummel, F.C. (2015): Modulating pathological oscillations by rhythmic non-invasive brain stimulation?a therapeutic concept? Front. Sys. Neurosci., 9; Article 33. doi: 10.3389/fnsys.2015.00033
  18. K?hn, A.A., Kempf, F., Br?cke, C., Gaynor Doyle, L., Martinez-Torres, I., Pogosyan, A., et al. (2008): High-frequency stimulation of the subthalamic nucleus suppresses oscillatory beta activity in patients with Parkinson?s disease in parallel with improvement in motor performance. Neurosci., 28:6165?6173. doi:10.1523/JNEUROSCI.0282-08.2008
  19. Laaksonen, K., Helle, L., Parkkonen, L., Kirveskari, E., M?kel?, J.P., Mustanoja, S., et al. (2013): Alterations in spontaneous brain oscillations during stroke recovery. PLoS One., 8:e61146. doi:10.1371/journal.pone.0061146
  20. Levy, R., Ashby, P., Hutchison, W.D., Lang, A.E., Lozano, A.M. and Dostrovsky, J.O. (2002): Dependence of subthalamic nucleus oscillations on movement and dopamine in Parkinson?s disease. Brain. 125(Pt. 6): 1196?1209. doi: 10.1093/brain/awf128
  21. Li, Y., Tong, S., Liu, D., Gai, Y., Wang, X., Wang, J., Qui, Y. and Zhu, Y. (2008): Abnormal EEG complexity in patients with schizophrenia and depression. Neurophysiol., Jun;119(6):1232-1241. doi: 10.1016/j.clinph.2008.01.104. Epub 2008 Apr 8.
  22. Lin, Y.P., Duann, J.R., Feng, W., Chen, J.H. and Jung, T.P. (2014): Revealing spatio-spectral electroencephalographic dynamics of musical mode and tempo perception by independent component analysis. Neuroeng. Rehabil., 11:18. doi: 10.1186/1743-0003-11-18.
  23. Lipsitz, L.A. and Goldberger A.L. (1992): Loss of ?complexity? and aging. JAMA., 267(13): 1806-1809.
  24. Liu, S.,Guo, J.,?Meng, J.,?Wang, Z.,?Yao, Y.,?Yang, J.,?Qi, H. and?Ming, D. (2016):? Abnormal EEG complexity and functional connectivity of brain in patients with acute thalamic ischemic stroke. Math. Methods. Med., 2016:2582478. doi: 10.1155/2016/2582478. Epub 2016 Jun 14.
  25. Liu, X.,Zhang, C.,?Ji, Z.,?Ma, Y.,?Shang, X.,?Zhang, Q.,?Zheng, W.,?Li, X.,?Gao, J.,?Wang, R., Wang, J. and Yu H. (2016): Multiple characteristics analysis of Alzheimer's electroencephalogram by power spectral density and Lempel-Ziv complexity. Neurodyn., 10(2):121-133. doi: 10.1007/s11571-015-9367-8. Epub 2015 Nov 12.
  26. Lu, L., Bao, G., Chen H., Xia, P., Fan, X., Zhang, J., Pei, G. and Ma, L. (2003): Modification of hippocampal neurogenesis and neuroplasticity by social environments. Neurol., 183(2): 600?609.
  27. Mahncke, H.W., Bronstone, A. and Merzenich, M.M. (2006): Brain plasticity and functional losses in the aged: scientific bases for a novel intervention. Brain Res., 157: 81?109.doi:10.1016/S0079-6123(06)57006-2
  28. Mandelbrot, B.B. (1982): The fractal geometry of nature. H. Freeman and Company: San Francisco.
  29. Manjarrez, E., Rojas-Piloni, J.G., M?ndez, I., Mart?nez, L., V?lez, D., V?zquez, D. and Flores, A. (2002): Internal stochastic resonance in the coherence between spinal and cortical neuronal ensembles in the cat. Lett., 326: 93?96.
  30. Manor, B. and Lipsitz, L.A. (2013): Physiologic complexity and aging: implications for physical function and rehabilitation. Neuropsychopharmacol. Biol. Psychiatry., 45:287-293. doi: 10.1016/j.pnpbp.2012.08.020.
  31. Marshall, L., Kirov, R., Brade, J., M?lle, M. and Born, J. (2011): Transcranial electrical currents to probe EEG brain rhythms and memory consolidation during sleep in humans.?PLoS One., 6:e16905. doi: 10.1371/journal.pone.0016905
  32. Maya-Vetencourt, J.F. and Origlia, N. (2012): Visual cortex plasticity: a complex interplay of genetic and environmental influences. Neural Plast., 14. doi: 10.1155/2012/631965
  33. Maya-Vetencourt, J.F., Sale, A., Viegi, A., Baroncelli, L., De Pasquale, R., O'Leary, O.F., Castr?n, E. and Maffei L. (2008)?: The antidepressant fluoxetine restores plasticity in the adult visual cortex.?Science.320: 385?388.? doi: 1126/science.1150516
  34. Maya-Vetencourt, J.F., Tiraboschi, E., Spolidoro, M., Castr?n, E. and Maffei, L. (2011): Serotonin triggers a transient epigenetic mechanism that reinstates adult visual cortex plasticity in rats. J. Neurosci.,33(1): 49-57. doi: 10.1111/j.1460-9568.2010.07488.x.
  35. Merabet, L.B. and Pascual-Leone, A. (2010): Neural reorganization following sensory loss: the opportunity of change. Nat. Rev. Neurosci., 11: 44?52. doi: 10.1038/nrn2758
  36. Merzenich, M. (2013): Soft-Wired: How the New Science of Brain Plasticity Can Change Your Life. Parnassus Publishing; 2nd edition, 266P.
  37. Mora, F.,Segovia, G. and del Arco, A. (2007): Aging, plasticity and environmental enrichment: structural changes and neurotransmitter dynamics in several areas of the brain. Brain Res. Rev.,?55(1):78-88. doi:10.1016/j.brainresrev.2007.03.011
  38. Moro, S.S., Kelly, K.R., McKetton, L., Gallie, B.L. and Steeves, J.K.E. (2015): Evidence of multisensory plasticity: Asymmetrical medial geniculate body in people with one eye. Neuroimage Clin., 9: 513?518. doi:? 1016/j.nicl.2015.09.016
  39. Moucha, R. and Kilgard, M.P. (2006): Cortical plasticity and rehabilitation. Prog. Brain Res., 157: 111?122. doi:10.1016/S0079-6123(06)57007-
  40. Namazi, H., Kulish, V.V. and Akrami, A. (2016): The analysis of the influence of fractal structure of stimuli on fractal dynamics in fixational eye movements and EEG signal. Scientific Res., 6:26639. DOI: 10.1038/srep2663
  41. Noice, T., Noice, H. and Kramer, A.F. (2013): Participatory arts for older adults: a review of benefits and challenges. The Gerontologist. 54(5): 741?753. doi:10.1093/geront/gnt13
  42. Nozaradan, S. (2014): Exploring how musical rhythm entrains brain activity with electroencephalogram frequency-tagging. Trans. R. Soc. B., 369: 20130393. http://dx.doi.org/10.1098/rstb.2013.0393
  43. Nudo, R.J. (2011): Neural bases of recovery after brain injury. Commun. Disord., 44(5): 515-520. doi:? 10.1016/j.jcomdis.2011.04.004
  44. Pan, W., Soma, R., Kwak, S. and Yamamoto, Y. (2008): Improvement of motor functions by noisy vestibular stimulation in central neurodegenerative disorders. Neurol., 255: 1657?1661.doi:10.1007/s00415-008-0950-
  45. Pascual-Leone, A., Freitas, C., Oberman, L., Horvath, J.C., Halko, M., Eldaief, M. et al. (2011): Characterizing brain cortical plasticity and network dynamics across the age-span in health and disease with TMS-EEG and TMS-fMRI. Brain Topogr., 24:302?315.doi:10.1007/s10548-011-0196-
  46. Pascual-Leone, A., Valls-Sol?, J., Wassermann, E.M. and Hallett, M. (1994): Responses to rapid-rate transcranial magnetic stimulation of the human motor cortex.?Brain. 117(Pt. 4):847?858. doi: 10.1093/brain/117.4.84
  47. Peng, C.K., Mietus, J.E., Liu, Y., Lee, C., Hausdorff, J.M., Stanley, H.E. et al. (2002): Quantifying fractal dynamics of human respiration: age and gender effects. Ann. Biomed. Eng., 30: 683?692. doi: 10.1114/1.148105
  48. Petsche, H. (1996): Approaches to verbal, visual and musical creativity by EEG coherence analysis. J. Psychophysiol., 24 (1-2): 145-159. doi:10.1016/S0167-8760(96)00050-5
  49. Priplata, A, Niemi, J.B., Harry, J.D., Lipsitz, L.A. and Collins, J.J. (2003): Vibrating insoles and balance control in elderly people. Lancet, 362: 1123?1124, DOI: 1016/S0140-6736(03)14470-4
  50. Pyankova, S.D. (2016): Fractal analysis in psychology: perception of self-similar objects. Psikhologicheskie Issledovaniya., 9(46):12. URL: http://psystudy.ru. Available 09.12.2016 at http://psystudy.ru/index.php/num/2016v9n46/1266-pyankova46.html [in Russ].
  51. Rhea, C.K., Kiefer, A.W., Wittstein, M.W., Leonard, K.B., MacPherson, R.P., Wright, W.G., et al. (2014): Fractal Gait Patterns Are Retained after Entrainment to a Fractal Stimulus. PLoS ONE., 9(9): e106755. http://dx.doi.org/10.1371/journal.pone.0106755
  52. Rieke, F. andBaylor, D.A. (2000): Origin and functional impact of dark noise in retinal cones. Neuron.,Apr;26(1):181-186. https://doi.org/10.1016/S0896-6273(00)81148-4
  53. R?der, B., Stock, O., Bien, S., Neville, H. and R?sler, F. (2002): Speech processing activates visual cortex in congenitally blind humans. J. Neurosci., 16(5):930?936.
  54. Sappey-Marinier, D., Calabrese, G., Fein, G., Hugg, J.W., Biggins, C. andWeiner, M.W. (1992): Effect of photic stimulation on human visual cortex lactate and phosphates using 1H and 31P magnetic resonance spectroscopy. Cereb. Blood Flow Metab., 12:584-592.
  55. S?rk?m?, T., Ripoll?s, P., Veps?l?inen, H., Autti, T., Silvennoinen, H.M.,Salli, E. et al. (2014): Structural changes induced by daily music listening in the recovering brain after middle cerebral artery stroke: a voxel-based morphometry study. Front Hum Neurosci.,?8:245.doi:??3389/fnhum.2014.00245
  56. Sauseng, P., Gerloff, C. and Hummel, F.C. (2013): Two brakes are better than one: the neural bases of inhibitory control of motor memory traces.?Neuroimage.,?65:52?58. doi: 10.1016/j.neuroimage.2012.09.048
  57. Schoffelen, J.-M., Oostenveld, R. and Fries, P. (2005): Neuronal coherence as a mechanism of effective corticospinal interaction. Science. 2005; 308: 111?113. doi: 10.1126/science.1107027
  58. Sejdić, E. and Lipsitz, L.A. (2013): Necessity of noise in physiology and medicine. Methods Programs Biomed., 111 (2): 459-470. http://dx.doi.org/10.1016/j.cmpb.2013.03.014
  59. Serruyaa, M.D. and Kahana, M.J. (2008): Techniques and devices to restore cognition. Brain Res., 192(2): 149?165. doi:10.1016/j.bbr.2008.04.007.
  60. Sharma, V. (2009): Deterministic chaos and fractal complexity in the dynamics of cardiovascular behavior: perspectives on a new frontier. Open Cardiovasc. Med. J.,3:110-123. doi: 10.2174/1874192400903010110.
  61. Sherman, S.M. and Guillery, R.W. (1996): Functional organization of thalamocortical relays. Journal of Neurophysiology., 76:1367?1395.
  62. Sikstr?m, S. and S?derlund, G. (2007): Stimulus-dependent dopamine release in attention-deficit/hyperactivity disorder. Psychol. Rev., 114, 1047-1075. http://dx.doi.org/10.1037/0033-295X.114.4.1047
  63. Soderlund, G., Bj?rk, C. and Gustafsson, P. (2016): Comparing Auditory Noise Treatment with Stimulant Medication on Cognitive Task Performance in Children with Attention Deficit Hyperactivity Disorder: Results from a Pilot Study. Psychol., 05 Sept. https://doi.org/10.3389/fpsyg.2016.01331
  64. Soderlund, G., Sikstrom, S. and Smart, A. (2007): Listen to the noise: noise is beneficial for cognitive performance in ADHD. J. Child Psychol. Psychiat., 48(8):840847. DOI: 1111/j.1469-7610.2007.01749.x
  65. Soderlund, G., Sikstrom, S., Loftesnes, J. and Sonuga-Barke, E. (2010): The effects of background white noise on memory performance in inattentive school children. Behav. Brain Functions. 6(1): 55. DOI: 1186/1744-9081-6-55. DOI: 10.1186/1744-9081-6-55
  66. Srinivasan, R., Bibi, F.A. and Nunez, P.L. (2006): Steady-state visual evoked potentials: distributed local sources and wave-like dynamics are sensitive to flicker frequency. Brain. Topogr., Spring;18(3):167?87. doi:? 1007/s10548-006-0267-4
  67. Stam, C.J. (2005): Nonlinear dynamical analysis of EEG and MEG: review of an emerging field. Clin. Neurophysiol., 116 (10): 2266-2301. DOI: 1016/j.clinph.2005.06.011
  68. Stein, B.E., Stanford, T.R. and Rowland, D.A. (2014): Development of multisensory integration from the perspective of the individual neuron. Rev. Neurosci., 15: 520?535. doi:10.1038/nrn3742
  69. Storch, D.,Gaston, K.J. andCep?k, J. (2002): Pink landscapes: 1/f spectra of spatial environmental variability and bird community composition. Proc. Biol. Sci.,?269(1502): 1791-1796.
  70. Strait, D.L., Parbery-Clark, A., Hittner, E. and Kraus, N. (2012): Musical training during early childhood enhances the neural encoding of speech in noise. Brain Lang., 123:191?201, doi:10.1016/j.bandl.2012.09.001, pmid:23102977.
  71. Sun, Y., Farzan, F., Barr, M. S., Kirihara, K., Fitzgerald, P. B., Light, G. A., et al. (2011). γ Oscillations in schizophrenia: mechanisms and clinical significance.?Brain Res.,?1413, 98?114. doi: 10.1016/j.brainres.2011.06.065
  72. Sur, M., Nagakura, I., Chen, N. and Sugihara H. (2013): Mechanisms of plasticity in the developing and adult visual cortex. Brain Res., 207;243?254.doi: 10.1016/B978-0-444-63327-9.00002-3
  73. Tan, C.O., Cohen, M.A., Eckberg, D.L. and Taylor, J.A. (2009): Fractal properties of human heart period variability: physiological and methodological implications. Physiol., 587(Pt 15): 3929?3941. doi: 10.1113/jphysiol.2009.169219.
  74. Taylor, R.P., Spehar, B., Donkelaar, P.V. and Hagerhall, C.M. (2011): Perceptual and physiological responses to Jackson Pollock?s fractals. Front. Hum. Neurosci., 5:60. http://dx.doi.org/10.3389/fnhum.2011.00060
  75. Tecchio, F., Zappasodi, F., Pasqualetti, P., Tombini, M., Salustri, C., Oliviero, A. et (2005): Rhythmic brain activity at rest from rolandic areas in acute mono- hemispheric stroke: a magneto encephalographic study. Neuroimage, 28:72--83. doi: 10.1016/j.neuroimage.2005.05.051
  76. Timme, N.M., Marshall, N.J., Bennett, N., Ripp, M., Lautzenhiser, E. and Beggs, J.M. (2016): Criticality Maximizes Complexity in Neural Tissue. Front. Physiol., 27 Sept 2016. https://doi.org/10.3389/fphys.2016.00425
  77. Uhlhaas, P.J., Haenschel, C., Nikolić, D. and Singer, W. (2008): The role of oscillations and synchrony in cortical networks and their putative relevance for the pathophysiology of schizophrenia. Schizophr. , 34: 927?943. doi: 10.1093/schbul/sbn062
  78. Valera, F., Lachaux, J.P., Rodriguez, E. and Martinerie J. (2001): The brainweb: phase synchronization and large-scale integration. Nature Rev. Neurosci., 2: 229?239. doi:10.1038/35067550
  79. van Praag, H., Kempermann, G., Gage, F.H. (2000): Neural consequences of environmental enrichment. Rev. Neurosci.,1?:191-198.?doi:10.1038/35044558
  80. Vasseur, D.A. and Yodzis, P. (2004): The color of environmental noise. Ecology. 85(4): 1146?1152.
  81. Vecchio, F.,Babiloni, C.,Lizio, R.,?Fallani Fde, V.,?Blinowska, K.,?Verrienti, G.,?Frisoni, G. and?Rossini, P.M. (2013): Resting state cortical EEG rhythms in Alzheimer's disease: toward EEG markers for clinical applications: a review. Clin. Neurophysiol.,?62:223-36.
  82. West, G.B., Brown, J.H. and Enquist, B.J. (1999): The fourth dimension of life: fractal geometry and allometric scaling of organisms. 284: 1677?1679. doi: 10.1126/science.284.5420.1677
  83. Westlake, K.P., Hinkley, L.B., Bucci, M., Guggisberg, A.G., Byl, N., Findlay, A.M. et al. (2012): Resting state α-band functional connectivity and recovery after stroke. Neurol., 237: 160--169. doi:10.1016/j.expneurol.2012.06.020
  84. Williams, J., Ramaswamy, D. and Oulhaj, A. (2006): 10 Hz flicker improves recognition memory in older people. BMC Neurosci., Mar 5;7:21. doi: 1186/1471-2202-7-21
  85. Williams, J.H. (2001): Frequency-specific effects of flicker on recognition memory. Neuroscience.104: 283?286.
  86. Yamamoto, Y.,Struzik, Z.R.,Soma, R.,?Ohashi, K. and Kwak, S. (2005): Noisy vestibular stimulation improves autonomic and motor responsiveness in central neurodegenerative disorders. Ann. Neurol., 58: 175-181. DOI: 10.1002/ana.20574
  87. Yuan, Q., Liu, X.H., Li, D.C., Wang, H.L. and Liu, Y.S. (2000): Effects of noise and music on EEG power spectrum. Space Med. Med. Eng. (Beijing), 13: 401?406.
  88. Yuvaraj, R. andMurugappan, M. (2016): Hemispheric asymmetry non-linear analysis of EEG during emotional responses from idiopathic Parkinson's disease patients. Cogn Neurodyn.,10(3):225-34. doi: 10.1007/s11571-016-9375-3. Epub 2016 Jan 28.
  89. Zhang, Y., Wang, C., Sun, C., Zhang, X., Wang, Y., Oi, H., He, F., Zhao, X., Wan, B., Du, J. and Ming, D. (2015): Neural complexity in patients with poststroke depression: A resting EEG study. Affect. Disord., 188:310-8. doi: 10.1016/j.jad.2015.09.017. Epub 2015 Sep 11.
  90. Zueva, M.V. (2013): Dynamic fractal flickering as a tool in research of non- linear dynamics of the evoked activity of a visual system and the possible basis for new diagnostics and treatment of neurodegenerative diseases of the retina and brain. World Appl. Sci. J., 27(4): 462?468. doi:10.5829/idosi.wasj.2013.27.04.13657
  91. Zueva, M.V. (2015): Fractality of sensations and the brain health: the theory linking neurodegenerative disorder with distortion of spatial and temporal scale-invariance and fractal complexity of the visible world. Aging Neurosci., 7:135. doi: 10.3389/fnagi.2015.00135

[Zueva Marina Vladimirovna. (2017); NONLINEAR STIMULATION TECHNOLOGIES TO ENHANCE THE EFFICIENCY OF THE THERAPY OF BRAIN DISORDERS AND EFFICACY OF COGNITIVE TRAINING. Int. J. of Adv. Res. 5 (Aug). 250-269] (ISSN 2320-5407). www.journalijar.com


Zueva Marina Vladimirovna
Zueva Marina Vladimirovna, Professor of Pathophysiology, Dr. Biol. Sci., Head of the Department of Clinical Physiology of Vision, Moscow Helmholtz Research Institute of Eye Diseases.

DOI:


Article DOI: 10.21474/IJAR01/5058      
DOI URL: https://dx.doi.org/10.21474/IJAR01/5058