28May 2017

STRATEGIES FOR BIOFILM INHIBITION.

  • Department of Periodontology and Implantology, Kamineni Institute of Dental Sciences, Sreepuram, Narketpally, Nalgonda TS- 508254.
  • Reader, Department of Periodontology and Implantology, Kamineni Institute of Dental Sciences, Sreepuram, Narketpally, Nalgonda TS-508254 .
  • Professor & HOD, Vice-principal, Department of Periodontology and Implantology, Kamineni Institute of Dental Sciences, Sreepuram, Narketpally, Nalgonda TS- 508254.
Crossref Cited-by Linking logo
  • Abstract
  • Keywords
  • References
  • Cite This Article as
  • Corresponding Author

Biofilms are groups of microorganisms in which cells stick to each other on a surface. A biofilm, is a polymeric mixture generally composed of extracellular DNA, proteins, and polysaccharides. Bacterial polysaccharides are a major component of the extracellular polymeric substance or matrix of biofilms, and mediate most of the cell-to-cell and cell-to-surface interactions required for biofilm formation and stabilization. Biofilm control is fundamental to oral health. The microorganisms involved are organize into complex biofilm communities with features that differ from those of planktonic cells. Control of oral biofilms is fundamental to the maintenance of oral health and to the prevention of gingivitis, and periodontitis. However, oral biofilms are not easily controlled by mechanical means and represent difficult targets for chemical control. This review deals with recent advances on novel strategies for biofilm dispersal and inhibition.


  1. Dror N, Mandel M, Hazan Z, Lavie G. Advances in Microbial Biofilm Prevention on Indwelling Medical Devices with Emphasis on Usage of Acoustic Energy 2009;9:2538-54.
  2. Vasilev K, Cook J, Griesser H. Antibacterial surfaces for biomedical devices. Expert Rev Med Devices 2009;6:553-67.
  3. Jansen B, Kohnen W. Prevention of biofilm formation by polymer modification. J Ind Microbiol 1995;15:391-96.
  4. Tang R, Jiang F, Wen J, Deng Y and Sun Y. Managing bacterial biofilms with chitosan-based polymeric nitric oxides: Inactivation of biofilm bacteria and synergistic effects with antibiotics. J Bioact Compat Polym 2016;31:393-410.
  5. Gibbons RJ, Etherden I. Comparative hydrophobicities of oral bacteria and adherence to salivary pellicles. Infect Immun 1983; 41:1190-96.
  6. Nesbitt WE, Doyle RJ, Taylor KG. Hydrophobic interactions and the adherence of Streptococcus sanguis to hydroxylapatite. Infect Immun 1982;38:637-44.
  7. Zhang XH, Rosenberg M, Doyle RJ. Inhibition of the cooperative adhesion of Streptococcus sanguis to hydroxylapatite. FEMS Microbiol Lett 1990;71:315-18.
  8. Meiron T, Saguy I. Adhesion Modeling on Rough Low Linear Density Polyethylene. J Food Sci 2007;72:485?91.
  9. Van Loosdrecht MC, Lyklema J, Norde W, Schraa G, Zehnder AJ. The role of bacterial cell wall hydrophobicity as a measure to predict the initial steps of bacterial adhesion. Appl Environ Microbiol 1987;53:1898-1901.
  10. Leslie J. On capillary action. Philos Mag 1802;14:193-205.
  11. Quirynen M, Marechal M, Busscher HJ, Weerkamp AH, Arends J, Darius PL, Van Steenberghe D. The influence of surface free-energy on planimetric plaque growth in man. J Dent Res 1989;68:796-99.
  12. Perdok JE Busscher HJ, Weerkamp AH, Arends J. The effect of an amine fluoride-stannous fluoride-containing mouthrinse on enamel surface free energy and the development of plaque and gingivitis. Clin Prev Dent 1988;10:3-9.
  13. Hirota K, Murakami K, Nemoto K, Miyake Y. Coating of a surface with 2-methacryloyloxyethyl phosphorylcholine (MPC) co-polymer significantly reduces retention of human pathogenic microorganisms. FEMS Microbiology Letters 248 2005;37?45.
  14. Besinis A, De Peralta T, Handy RD. Inhibition of biofilm formation and antibacterial properties of a silver nano-coating on human dentine. Nanotoxicology 2014;8:745-54.
  15. Donoghue HD. Can the colonization resistance of the oral microflora be enhanced? Microb Ecol Hlth Dis 1990;3:1-4.
  16. Hillman JD, Socransky SS. The theory and application of bacterial interference to oral diseases. In: Myers HM, editor. New biotechnology in oral research. Basel: Karger 1989;1-17.
  17. Teughels W, Kinder Haake SA, Sliepen I, Pauwels M, Van Eldere J, Cassiman JJ. Bacteria interfere with A. actinomycetemcomitans colonization. J Dent Res 2007;86:611-17.
  18. Rendueles O, Kaplan J, Ghigo J. Antibiofilm polysaccharides. Environ Microbiol 2013;15:334-46.
  19. Claydon N, Hunter L, Moran J, Wade WG, Kelty E, Movert R, Addy M. A six-month home-usage trial of 0.1% and 0.2% delmopinol mouthwashes. I. Effects on plaque, gingivitis, supragingival calculus and tooth staining. J Clin Periodontol 1996;23:220-28.
  20. Moran J, Addy M, Wade WG, Maynard JH, Roberts SE, Astrom M, Movert R. A comparison of delmopinol and chlorhexidine on plaque regrowth over a 4 day period and salivary bacterial counts. J Clin Periodontol 1992;19: 749-53.
  21. Steinberg D, Beeman D, Bowen WH. The effect of delmopinol on glucosyl transferase adsorbed onto saliva-coated hydroxyapatite. Arch Oral Biol 1992;37:33-38.
  22. Rundegren J, Arnebrandt T. Effect of delmopinol on the viscosity of extracellular glucans produced by Streptococcus mutans. Caries Res 1992;26:281-85.
  23. Elworthy AJ, Edgar R, Moran J, Addy M, Movert R, Kelty E, Wade WG. A six-month home-usage trial of 0.1% and 0.2% delmopinol mouthwashes. II. Effects on the plaque microflora. J Clin Periodontol 1995;22:527-32.
  24. Kolenbrander PE, Andersen RN, Moore LV Characterization of Streptococcus gordonii (S. sanguis) PK488 adhesion-mediated coaggregation with Actinomyces naeslundii Infect Immun 1990;58:3064-72.
  25. Kolenbrander PE, Williams BL. Lactose-reversible coaggregation between oral actinomyces and Streptococcus sanguis. Infect Immun 1981;35:95-102.
  26. Maria K, Maria H, Scott J. Bacterial Biofilms: Development, Dispersal, and Therapeutic Strategies in the Dawn of the Postantibiotic Era. Cold Spring Harbor Laboratory Press. 2014.
  27. Kaplan JB. Biofilm dispersal: Mechanisms, clinical implications, and potential therapeutic uses. J Dent Res 2010;89:205?18.
  28. Shanks R, Sargent J, Martinez R, Graber M, O?Toole G. Catheter lock solutions influence staphylococcal biofilm formation on abiotic surfaces. Nephrol Dial Transpl 2006;21:2247?55.
  29. Kharidia R, Liang J. The activity of a small lytic peptide PTP-7 on Staphylococcus aureus biofilms. J Microbiol 2011;49:663?8.
  30. Novak KF, Diamond WJ, Kirakodu S, Peyyala R, Anderson KW, Montelaro RC, Mietzner TA. Efficacy of the de novo-Derived Antimicrobial Peptide, WLBU2, against Oral Bacteria Antimicrob. Agents Chemother 2007;1-16.
  31. Berg V, Das P, Chorell E, Hedenstrom M, Pinkner JS. Carboxylic acid isosteres improve the activity of ring-fused 2-pyridones that inhibit pilus biogenesis in E. coli. Bioorg Med Chem Lett 2008;18:3536-40.
  32. Van Hoogmoed C G, Van der Kuijl-Booij M, Van der Mei H C, Busscher H J. Inhibition of Streptococcus mutans NS adhesion to glass with and without a salivary conditioning film by biosurfactant-releasing Streptococcus mitis strains. Appl Environ Microbiol 2000;66:659-63
  33. Booth V, Ashley FP, Lehner T. Passive immunization with monoclonal antibodies against Porphyromonas gingivalis in patients with periodontitis. Infect Immun 1996;64:422-27.
  34. Marsh PD. Microbial ecology of dental plaque and its significance in health and disease. Adv Dent Res 1994;8:263-71.
  35. Barrett JF, Hoch JA. Two-component signal transduction as a target for microbial anti-infective therapy. Antimicrob AgentsChemother 1998;42:1529-36.
  36. Babitha S, Srikanth G, Sachin BM, Sunaina S, Priyanka T, Supriya M. Quorum sensing and quorum quenching: facebook of microbial world. Int J Sci Res 2014;3:423-26.
  37. Givskov M, de Nys R, Manefield M. Eukaryotic interference with homoserine lactone-mediated prokaryotic signalling. J Bacteriol 1996;178:6618-22.
  38. Padovani GC, Feitosa VP, Sauro S, Tay FR, Duran G, Paula AJ, Duran N. Advances in dental materials through nanotechnology: facts, perspectives and toxicological aspects. Trends Biotechnol 2015;33:621-36.
  39. Koo H, Falsetta ML, Klein MI. The exopolysaccharide matrix: a virulence determinant of cariogenic biofilm. J Dent Res 2013;92:1065-73.
  40. Santos VE Jr, Vasconcelos Filho A, Targino AG, Flores MA, Galembeck A, Caldas AF Jr, Rosenblatt A. A new ?silver-bullet? to treat caries in children nano silver fluoride: a randomized clinical trial. J Dent 2014;42:945-51.

[B. Pooja sree, Juliet Josephine, G. Jagadish Reddy and Raja Babu. P. (2017); STRATEGIES FOR BIOFILM INHIBITION. Int. J. of Adv. Res. 5 (May). 1222-1228] (ISSN 2320-5407). www.journalijar.com


Dr .B. POOJASREE
Post graduate

DOI:


Article DOI: 10.21474/IJAR01/4235      
DOI URL: http://dx.doi.org/10.21474/IJAR01/4235