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In this paper, we have developed a dynamic model to replicate the 

motions a helicopter. Unmanned helicopters have more advantage 

over manned as they are perfect for performing missions 

autonomously,which is vital to understand a dynamic model to enable 

the development of control and state estimation algorithms. This 

article presents a comprehensive method for identification of a 

nonlinear model of the unmanned helicopter.The accuracy of the 

developed model is verified by the comparison between predicted and 

actual responses from the model and the flight experiments, and 

between key parameters and the theoretical values. This report 

describes the process and results of the dynamic modeling of model-
scale unmanned helicopter using system identification. 
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Introduction:- 
Helicoptersare highly regarded because they are easilymaneuverable and are able to hover, making them perfect for 
flying in closed environments while streaming data to the ground. Autonomous flight is necessary for these missions 

because of the fast and unstable dynamics of the aircraft, which are exacerbated by any transmission delays of 

sensor data and control inputs. The research and development of UAVs have gained much attention in academic and 

industrial fields. Researchers have explored the considerable potential of UAVs for various military and civilian 

applications. For successful application to these missions, control system for an autonomous flight should be 

designed and implemented.Compared to conventional fixed-wing aircraft, obtaining a state-space model for 

helicopter is more difficult. The complexity of helicopter flight dynamics makes modeling difficult, and without a 

good model of the flight-dynamics, the flight-control problem becomes inaccessible. A system model can be 

obtained in two ways, through first principles modeling and system identification. A pure first principle modeling is 

unsuitable for a small-scale helicopter because this approach requires extensive knowledge of helicopter flight 

mechanics. Moreover, unlike in a quad copter, the helicopter has coupling between its various parameters which has 
to be taken into account and thus makes the modeling much more difficult.Helicopter rotors add dynamics that 

couple with therigid body fuselage motions and the surrounding flowfield, introducingcomplex aerodynamics which 

manifest in partas rotor/wake and rotor/fuselage interactions. We therefore go for system identification method to 

get the dynamic model. 
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Helicopter Dynamics:- 
Thedynamics of the helicopter are represented as a rigidbodywhich can be coupled to additional dynamics such 

asthe rotor or engine/drive-train dynamics. Includingthese subsystems improves the accuracy of the model making it 

more consistent for a range of frequencies. 

 

Angular Dynamics:- 

The frequency response of therolling and pitching rates p and q to the lateral andlongitudinal cyclic inputsδ𝑙𝑎𝑡 ,δ𝑙𝑜𝑛  

shows a pronounced underdamped secondorderbehaviour.In this modelling approach, the lateral and longitudinal 

blade flapping dynamics are represented by two coupled first-orderdifferential equations. 

 

Heave Dynamics:- 

With respect to heave dynamics, a first order system can successfully capture this part of the helicopter dynamics. 
 

Yaw Dynamics:- 

Here the yaw response has a nature of second order system. The differential equations used for state space model are 

as follows.    

𝑟 =𝑁𝑟r + 𝑁𝑝𝑒𝑑 (δ𝑝𝑒𝑑  -𝑟𝑓𝑏  ) 

𝑟𝑓𝑏 = - 𝐾𝑟𝑓𝑏 𝑟𝑓𝑏  + 𝐾𝑟r 

 

State Space Model:- 
The aim of system identification is to construct a suitable model, such that the input output behavior of the model 

approximatesthe input-output behavior of the helicopter system, i.e. for a small positive constant. 

 
 𝑦(𝑘) − 𝑦 (𝑘) ≤ε∀k >0 

𝑦𝑖(k+d) =𝐹𝑖  ( 𝑢 (k),..𝑢 (k - 𝑛1 + 1), 𝑦 (k – 1),..𝑦 (k - 𝑛1+ 1))  i=1,2…p 

 

Wherein1 is the order (or equivalent delay) of the system, d is the relative degree of the function. 

A 6-degrees-of-freedom linear rigid body helicopter model with first-order approximation is given by a differential 

equation. 

X =AX+BU 

 

The system identification analysis used a control vector consisting of the four pilot joystick inputs, consisting of the 

roll angle, pitch angle, translational velocities, rotational velocities, and rotor speed. These are written symbolically 
as- 

𝑢𝑇= 𝛿𝑡𝑟 𝛿𝑙𝑜𝑛 𝛿𝑙𝑎𝑡𝛿𝑑𝑖𝑟  
 

𝑍𝑇=  ∅𝜃𝑢𝑣𝑤𝑝𝑞 𝑟 Ω  
 

Where u, v, w: body-coordinate velocity,Ω, ∅, : roll, pitch, yaw angle and  p, q, r : roll, pitch, yaw rate respectively. 

The key dynamics of the helicopter are seen from reference to the system’s Eigen values and eigen vectors. The first 

4 roots are on the real axis, of which 2 are stable and 2 are unstable. The unstable modes involve the horizontal 

velocities with both altitudes and longitudes. The stable modes involve horizontal and vertical velocities. The eigen 

value 5 is associated with heavy response. The Eigen pair 6 and 7 is associated with the closed-loop yawing mode 

resulting from the active yaw damping system. The pitching mode (eigenvalues #8-9), which has a considerable roll 

coupling component, has a frequency that is nearly exactly the square root of the pitch flap spring. The coupled 

rolling mode with slight pitching component (Eigen values #10-11), has a frequency that corresponds to the square 

root of the roll flap spring. 
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Fig1:-State Space Model. 

 
Fig 2:-MATLab Simulink Model. 

 

 

Radial Basis Function:- 

The idea of Radial Basis Function derives from the theory of function approximation. Their main features are: They 
are two-layer feed-forward networks. The hidden nodes implement a set of radial basis functions. The output nodes 

implement linear summation functions as in an MLP. The network training is divided into two stages: first the 

weights from the input to hidden layer are determined, and then the weights from the hidden to output layer. The 

training/learning is very fast. The networks are very good at interpolation. 

 

The exact interpolation of a set of N data points requires every one of the D dimensional input vector p = {x : i = 

1,...,D} to be mapped onto the corresponding target output t p . The goal is to find a function f (x) such that 

f  (𝑥𝑝 ) = 𝑡𝑝∀ p = 1,…,N 
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This approach introduces a set of N basis functions, one for each data point. The output of the mapping is then taken 

to be a summation of the basis functions, i.e. 

f  (x) =  𝑤𝑁
𝑝=1 𝑝

∅ ( 𝑥 − 𝑥𝑝 ) 

 

The idea is to find the “weights” 𝑤𝑝  such that the function goes through the data points. It is easy to determine 

equations for the weights: 

f  (𝑥𝑞 ) =  𝑤𝑁
𝑝=1 𝑝

∅ ( 𝑥𝑞 − 𝑥𝑝 )=𝑡𝑞  

 

The radial basis network is a two-layer network. First, in layer 1 of the RBF network, instead of performing an inner 

product operation between the weights and the input (matrix multiplication), we calculate the distance between the 

input vector and the rows of the weight matrix. The second layer is the linearization layer. 

 
Fig3:-Radial Basis Network. 

 

Model Verification:- 

We first find out the state space model of the system from the data obtained from different flight experiments. The 

various values are substituted into the state space model (Fig1) and obtain the state space system as follows. 

 

 
Fig4:-“A” matrix of the state space system. 

 

 
Fig5:- “B” matrix of the state space system. 
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We then run the code in MATLab to find the fit between the estimated model and the helicopter model. There may 

not always be a perfect fit as there will always be some kind of discrepancy in the data, error in measurement 

readings and the inability of the network to keep up with the changes in the data etc. 

 

 
Fig6:- Yaw Rate (Blue=Actual o/p, Red=Network o/p) 

 

 
Fig 7:- Roll Angle (Blue=Actual o/p, Red=Network o/p) 

 

 

Particle Swarm Optimization:- 

Particle Swarm Optimization (PSO) is a swarm intelligence algorithm. It is based on the behavior of birds flocking 

together when they search for food. There is only one piece of food in the area being searched. All the birds do not 

know where the food is. But they know how far the food is in each iteration. So what's the best strategy to find the 
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food? The effective one is to follow the bird which is nearest to the food.In the proposed algorithm, an agent of the 

swarm, called a particle, learns from the best position that it has occupied and also the best position that any particle 

of the swarm might have encountered. These positions are saved in memory of each particle and constantly updated 

to direct the swarm to the global best position. The best position of a particle is called cognitive index - pBest, and 

the best of the swarm the social index - gBest. The equations that govern the change in positions of a particle are: 

 

𝑉𝑖+1 = w* 𝑉𝑖   + (𝐶𝑝*𝑟1*(𝑝𝑏𝑒𝑠𝑡𝑖 - 𝑋𝑖)) + (𝐶𝑔*𝑟2*((𝑔𝑏𝑒𝑠𝑡 - 𝑋𝑖)) 

𝑋𝑖+1 = 𝑋𝑖  + 𝑉𝑖+1 

The flow of the PSO algorithm can be described by Algorithm 1,mis the number of particles. Where x is the position 

of the particles, i.e., the potential solutions, v is the velocity of the particles, 𝑓𝑙𝑏𝑒𝑠𝑡 and 𝑥𝑙𝑏𝑒𝑠𝑡 is the best fitness value 

and position for individual particles.𝑓𝑔𝑏𝑒𝑠𝑡 and𝑥𝑔𝑏𝑒𝑠𝑡 is the best fitness value and position for the group. 

The algorithm is as follows- 

1. Initialize the number of particles- m value. 

2. while ( k< max. iterations ) do 

3. for (each particle j ∈[1….m] )do 

4. f PSO-FITNESS( x[j]) 

5. Iff<𝑓𝑙𝑏𝑒𝑠𝑡 [j] then 

6. 𝑓𝑙𝑏𝑒𝑠𝑡 [j] f 

7. 𝑥𝑙𝑏𝑒𝑠𝑡 [j]x[j] 

8. end if 

9. iff<𝑓𝑏𝑒𝑠𝑡 then 

10. 𝑓𝑔𝑏𝑒𝑠𝑡  f 

11. 𝑥𝑔𝑏𝑒𝑠𝑡  x[j] 

12. end if 

13. v[ j, k+1] = wv [ j, k ] + 𝑐1∅1(𝑥𝑙𝑏𝑒𝑠𝑡 [j,k] – x[ j, k ] ) + 𝑐2∅2(𝑥𝑔𝑏𝑒𝑠𝑡 [ j, k ] – x [ j, k ] ) 

14. x[j, k+1] =x [ j, k ] + v[ j, k+1] 

15. end for. 

16. end while. 

 

Here we take the number of particles to be 100 and the number of iterations to be 1000.  

 

Multi Layer Perceptron (MLP):- 

Artificial Neural Networks provides a method for learning arbitrary mapping between two data sets. A typical ANN 

contains a number of adjustable parameters called weights. Supervised learninginvolves finding a set of weights that 

minimizes the mapping error. Here mapping error is defined as the difference between observed output and NN's 

output. Fig.8 shows a typical MLP ANN [4, 6]. 

 
Fig 8:- Typical MLP network 
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In this case also, we find out the state space model of the system which is as follows. 

 
Fig 9:- “A” matrix of state space system. 

 

 

 
Fig 10:- ”B” matrix of state space system. 

 

Model Verification:- 

 
Fig11:-Pitch Rate (Blue=Actual o/p, Red=Network o/p) 
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Fig12:-Climb Rate (Blue=Actual o/p, Red=Network o/p) 

 

Conclusion:- 
The overall consistency of these models provides good evidence that the identified models are accurate and that the 

methods used are appropriate for identifying miniature helicopters. We can see from the graphs that we have not 

obtained the best fit possible as there are some discrepancies in the data.PSO is a powerful optimization tool in the 

realm of controltheory, particularly for the time-domain state space systems,where performance tuning has not been 
well-studied in thepast.When analysing identification results, caremust be taken by the user to consider what 

frequency range is of interest.Concerning the different methods and approaches investigated in the thesis, itcan be 

stated that a general agreement across all methods has been seen in the estimated models. We can therefore conclude 

here the radial basis gives a better model to work with as the graphs show a better fit to the model than particle 

swarm optimization method. To improve upon PSO method, we must go into quantum optimization. 
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