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The study of the origin and mechanisms of disease in human and other 

vertebrates has been the main reason leading to the discovery and 

development of new drugs.  Drug candidates sometimes fail at late stages of 

clinical trials resulting in wasteful expenditure for pharmaceutical 

companies. Other major public health concerns are side-effects of drugs or 

adverse drug reactions which cause the withdrawal of the drug even after 

they have reached the market. Drug guidelines for potential risks like 

carcinogenicity, genotoxicity and reproductive toxicity are useful in 

assessing the risk profile of any drug in the development stage. Safety 

guidelines issued by the Committee for Medicinal Products for Human Use 

(CHMP) have also stressed on reduction of animals for drug testing. It 

emphasizes the use of in silico approaches as part of a tiered non-clinical 

testing. Some of the in silico methods for determining the toxicity of drugs in 

drug discovery are briefly reviewed. 
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INTRODUCTION   
Drugs induce perturbations to biological systems which encompass various molecular interactions such as protein-

protein interactions, metabolic pathways and signal transduction pathways, leading to the observed side-effects. 

Non-specific interaction with non-target molecules with varying affinities causes unfavourable interaction observed 

as side effects. 

Screening procedures involve several steps to test for toxicity of new chemicals which have the potential to be 

formulated as a drug. Physicochemical profiling form an essential part of the drug discovery process generating drug 

lead compounds. The use of in silico estimation of toxicity helps remove costly animal testing and speed up the drug 

discovery process. 

 

Chemicals as drugs 

Drugs are chemicals which interact specifically in the body bringing about a specific effect. The targets for drugs are 

proteins (mainly enzymes, receptors and transport proteins) and nucleic acids (DNA and RNA). Drugs react with the 

binding site and become permanently attached via a covalent bond that has bond strength of 200–400 kJ mol. 

However, most drugs interact through weaker forms of interaction known as intermolecular bonds. In the body, the 

drug has to travel through an aqueous environment in order to reach its target. To interact favourably, the water 

molecules surrounding the drug and the target binding site have to be removed. This requires energy and if the 

energy required to desolvate is greater than the energy gained by the binding interactions, then the drug may be 

ineffective. Pharmacodynamics is the study of how drugs interact with their targets through binding interactions 

(Otagiri et al,1999). Pharmacokinetics is the kinetics of how the drug is Absorbed, Distributed, Metabolized and 

Excreted (ADME).  

Xenobiotics cause many types of toxicity by varied mechanisms. Some chemicals which are toxic are the 

undegraded "parent" compounds. Others must be metabolized before they cause toxicity. Many xenobiotics often 
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affect only specific target organs. Others, however, on contact can damage any cell or tissue. The target organs 

affected may vary depending on route of exposure and dosage. 

Toxic effects are generally classified according to the site of the toxic effect. In some cases, the effect may occur at 

only one site or specific target organ. In other cases, toxic effects may occur at multiple sites. This is referred as 

systemic toxicity. Some of the types of systemic toxicity are acute toxicity, chronic toxicity, developmental toxicity, 

genetic toxicity (somatic cells) and carcinogenicity. The scientific and ethical committee recommends predictive 

toxicity testing which represents a challenge to those who would like to see animal testing replaced by non-animal 

tests and testing strategies. The usefulness of animal studies for predicting long-term target-organ and target-system 

effects in humans is limited by inter-species differences as is in the case of carcinogenicity testing and reproductive 

toxicity testing. 

 

Target Identification and Validation 

Identification of disease associated pathways furthermore allows to link pathway-specific biomarkers and drug 

targets.A validated target should have a clear biological function, have an essential role for the growth or survival of 

the organism, should be expressed  during the relevant life stages , be druggable and should have the possibility of 

being screened in a biochemical or cellular assay. 

Common target validation methods are RNA interference, antisense RNA, and antibody-mediated inhibition 

experiments. Alternatively, the validation of a drug target is performed using chemical compounds. In such cases, 

experimental compounds with well-understood modes of action are tested directly and screened. With positive 

results, it is inferred that the phenotypic effect is due to the interaction of the chemical compound with its known 

target. 

Data mining refers to the use of bioinformatics approach especially to extract or filter valuable targets cited in 

literature database or other biomedical data such as microarray data  have given a boost to target identification and 

discovery (Yang et al, 2009). No single data mining approach is sufficient for understanding the cellular 

mechanisms and reconstructing the biological networks. Some of the search engines include Chilibot, Textpresso, 

and PreBIND. Literature searches on model organism and subject-specific articles are available, in collaboration 

with databases like Flybase, Wormbase and The Arabidopsis Information Resource (TAIR) (Cohen et al,2008). 

Normalization of gene and protein names mentioned in biomedical texts has become an important step in many 

datamining pipelines, which is being done by the Gnat library (Hakenberg et al, 2011). 

Proteomic data mining are emerging datamining approaches in the post-genomic era. High-throughput mass 

spectrometry analysis has emerged and its data mining would help to analyze and extract information from massive 

dataset. A study of disease-related networks by Krauthammer et al., 2004 was developed into a mining tool called 

GeneWays (Krauthammer et al., 2004). It searches by automatically extracting, analyzing, visualizing and 

integrating molecular pathway data from full-text research articles and predicting the physical interactions among 

candidate disease genes and understanding cell functions. 

Pathway approach: A novel therapeutic target in various human cancers. This conserved signaling pathway precisely 

regulates self-renewal and terminal differentiation in embryonic development, but is typically silenced in adult 

tissues, with reactivation usually only during tissue repair. For example, in malaria, a shift from blood stage to liver 

stage for high-throughput phenotypic drug screens where a number of genes and proteins are expressed only during 

the liver stage,, thus represent a likely stage-specific drug target (Jamal et al,2013). 

Molecular imaging has increasingly been used in drug development. The identification of imaging targets usually 

cell surface or membrane-bound proteins,help in selecting candidates for drug development and understanding of 

drug activity and disease ( Pospisil et al,2006; Willmann et al, 2008). 

The data are collected from a variety of sources which include publications and patent information, gene expression 

data, proteomics data, transgenic phenotyping and compound profiling data. Identification approaches also include 

examiningmRNA/protein levels to determine whether they are expressed in disease and if they are correlated with 

disease exacerbation or progression. Biological targets have to be prioritized by the uniqueness of their roles and 

integrated and analyzed across many different disciplines to retrieve meaningful targets (Yang et al, 2009). Defects 

in expression or function or deregulation of apoptosis may cause diseases, such as cancers, immune diseases, and 

neurodegenerative disorders (Jiang et al, 2004). Apoptotic proteins leading to programmed cell death involved in the 

pathogenesis or progression of several diseases, including their biochemical mechanisms and three-dimensional 

structures, have provided a wealth of information in drug discovery. One such database is the Gene Expression 

Omnibus (NCBI) (http://www.ncbi.nlm.nih.gov/geo/which provide extensive datasets for expression levels in 

diseased statesfor analysis. 
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Prioritizing genomic drug targets  
The identified drug target must fulfill a variety of criteria to allow the progression to the next stage. The drug target 

must be essential to the pathogen's growth. The homology between target and host must be low or nonexistent, 

which would prevent host toxicity. The activity of the target in the diseased conditions must not be compromised 

with minimal or no interaction with the host and host flora but high binding specificity for the pathogen. Targets 

with high sequence similarity to its host and host flora would be eliminated from the list (Hasan et al, 2006). The 

prioritized genes in application to the problem of TB drug development is listed in Table 1. The selection criteria 

can be found easily by querying publicly available bioinformatics resources, including metabolic pathway databases 

such as KEGG (Kyoto encyclopedia of genes and genomes), protein classification sets such as COGs (clusters of 

orthologous groups) , and databases of “druggable” proteins. A recent assessment system is the Druggable Pro tein-

protein Interaction Assessment System' (Dr. PIAS)(Sugaya et al, 2011). Information on tertiary structures, drugs and 

chemicals, and biological function associated with PPIs retrieved from public databases are stored as a database. 

Select candidates of druggable PPIs that are more promising as drug targets in a research area (e.g., disease, 

pathway, or protein family) are available at http://www.drpias.net.  

 

Hit Discovery 

Hit is the starting point for small molecule drug discovery.  A hit is usually defined as a molecule which binds to the 

target, which has been identified to be important in the disease of interest. Until recently, hits were identified by 

randomly screening millions of compounds against a target.  In practice, this has yielded fewer hits than expected so 

a new tailored approach has emerged (Hughes et al, 2011). A workflow depicting the stages of generation of lead 

compound to the final consumer is shown in Fig1. 

The compound library can then be screened to provide hits. Each research site has the infrastructure to quickly 

perform medium throughput screens (MTS, approximately 40,000 compounds) and UCB has a global HTS facility 

(100,000 - 1,000,000 compounds).   

 

Identify Leads  

Hit to lead molecule generation involves  

1. Knowledge of 3D structure of target site  

2. Calculating the target affinity for the hit (ligand) 

3. Virtual screening of the hits 

The screening comprises docking small molecule ligand (hit) available from a library or de novo 

construction of ligand which can bind to active site of target.  In this way after a series of iterations the 

molecules which bind better, subsequently become „hits‟. In stage two  docking studies are used to check 

for binding specificity which become suitable to be passed on to stage three (Pitt et al,2013). Stage three 

include ADMET profiling to be labeled as „leads‟ (Moroy et al, 2012). ACD/ADME Suite from ACD/Labs 

(http://www.acdlabs.com/products/pc_admet/adme/adme/) is a software for the prediction of ADME 

properties from chemical structure which provides predictions relating to the pharmacokinetic profiling of 

compounds and predicts ADME properties, P-glycoprotein specificity, oral bioavailability, passive 

absorption, blood brain barrier permeation, distribution and P450 inhibitors. 

The identification of small molecule modulators of protein and the process of transforming these into high-

content lead series are key activities in modern drug discovery.   

1. Strategies for Hit and Lead generation 

In situations where the specific enzymes responsible for the disease are unknown, it is essential to 

investigate complex phenotypes in living cells. Phenotypic screens and target-based screens are generally 

employed for the purpose.The former also called in vivo screens in live cells or intact organisms, looks at 

the disease-modifying effects, or phenotypes, that compounds induce in cells, tissues or whole organisms. 

This would help find out the target or targets that are being “hit” by the candidate molecule, causing the 

effect.The target-based screens measures the effect of compounds on a purified target protein via in vitro 

assays where an enzymatic or binding reaction with purified protein - is assayed (Burbaum et al, 

1997,Crews and Splittgerber, 1999, Yeh and Crews, 2003, Boppana et al, 2009). The response of an intact 

organism to a drug is often dependent on interactions between various cell types and tissues that are not 

possible to predict based on the results of a pure protein high-throughput screen. Phenotype-based 
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compound screening was used in zebrafish models which has the potential for identifying drug leads. 

Phenotypic high-throughput screens have identified compounds that are active in various cell culture-based 

or small animal models of cardiovascular disease.  

In situations where the target protein is known, knowledge-based screening or focused screening is 

employed. It involves selecting from the chemical library smaller subsets of molecules that are likely to 

have activity at the target protein based on knowledge of the target protein eg. literature or patent 

precedents for the chemical classes likely to have activity at the drug target (Boppana et al, 2009). This 

type of knowledge has given rise, to early discovery paradigms using pharmacophores and molecular 

modeling to conduct virtual screens of compound databases (McInnes, 2007). Pharmacophore modeling is 

a powerful means to generate and use 3D information to search for novel active compounds, particularly 

when no receptor geometry is available. Currently, various automated pharmacophore generators have been 

developed, including commercially available software HipHop (Barnum et al, 1996), HypoGen (Li et al, 

1999) (Accelrys Inc., http://www.accelrys.com), DISCO (Martin, 2000), GASP (Jones and Willet, 2000), 

GALAHAD (Tripos Inc., http://www.tripos.com), PHASE (Dixon et al, 2006)(Schro¨dinger Inc., 

http://www.schrodinger.com) and MOE (Chemical Computing Group, http://www.chemcomp.com)  

Ligand profiling is an emerging computational method for predicting the most likely targets of a bioactive 

compound and therefore anticipating adverse reactions, side effects and drug repurposing. A few 

encouraging successes have already been reported using ligand 2-D similarity searches and protein–ligand 

docking (Ghemtio et al, 2012). Other types are receptor–ligand-derived pharmacophore searches as a tool 

to link ligands to putative targets 

Fragment screening involves the generation of libraries having small molecular weight compounds. These 

molecules can be grown efficiently or have evolved and then optimised (Law et al,2009,Hughes et al,2011). 

Finally, a specialized physiological screening is employed which is a tissue-based approach looking at in 

vivo effects and screening them. 

2. Physicochemical profiling: 

Physicochemical properties at an early phase of drug discovery and development is crucial to reduce 

attrition rates due to poor biopharmaceutical properties. With the profiling data and risk assessment of 

chemicals, it is possible to enhance the predictive power of in vitro tools (Wang and Skolnik, 2009). 

Among these properties, ionization, lipophilicity, solubility and permeability are mandatory to predict the 

pharmacokinetic behavior of new chemical entities. Pharmacokinetic processes often referred to as ADME, 

determine the drug concentration, their distribution and metabolism in the body when the medicines are 

prescribed. Drugs of different nature show different types of ADME‟s. For example most of the drugs are 

usually excreted from the body after the earlier liberation, absorption, distribution and metabolism but in 

rare cases, some drugs irreversibly accumulate in body tissue. 

3. Toxicity estimation 

The aim of reducing toxicities in lead optimization that lack appropriate experimental test can be achieved 

by in silico tools which provide a means of assessing toxicity. Chemicals and its potential breakdown 

products experimentally tested or untested, are evaluated using TOxicity Prediction by Komputer Assisted 

Technology TOPKAT (Prival, 2001), ADMET Predictor and Toxicity Estimation Software Tool (T.E.S.T) 

(Bakhtyari et al,2013). Public databases for genotoxicity and carcinogenicity: The Carcinogenic Potency 

Database (CPDB) has been designed to obtain data which would give the best estimates of carcinogenic 

potency. Information on the time of death and tumor pathology for each animal were available from a set 

of National Cancer Institute (NCI) bioassays, NCI bioassays on aromatic amines (Russfield, 1973) , and 

from tests in nonhuman primates by the NCI Laboratory of Chemical Pathology through chemical 

carcinogenesis studies (Thorgeirsson et al, 1994). Potency values in the CPDB are calculated using 

analysis. Both the CPDB and the online NTP database have been “chemically-indexed” in the DSSTox 

(Distributed Structure-searchable Toxicity) database and the National Center for Computational 

Toxicology (NCCT).The European chemical Substances Information System (ESIS) is a freely accessible 

data via the JRC ex-ECB website EXCHEM (http://dra4.nihs.go.jp/) was developed by the Chemicals 

Investigation Promoting Council, Japan and was supervised by Office of Chemicals Safety Evaluation and 

Licensing Bureau Pharmaceutical and Food Safety Bureau Ministry of Health, Labour and Welfare, Japan. 

The Genetic Activity Profile Database (GAP) developed by US EPA and The International Agency for 

Research on cancer (IARC), is now maintained by ILS (http://www.ils-inc.com). ToxRefDB and 

http://www.ils-inc.com/


ISSN 2320-5407                           International Journal of Advanced Research (2015), Volume 3, Issue 7, 1522-1528 

 

1526 

 

TOXNET is maintained by the US National Library of Medicine (NLM). The  Organisation for Economic 

Cooperation and Development, OECD Toolbox, is connected with genotoxicity and carcinogenicity 

database. TOPKAT and Toxtree are used to assess ecotoxicity and mutagenicity, and were created using 

bacterial mutagenicity data. These test methods for chemical substances were reviewed by the Institute for 

Health and Consumer Protection of the European Commission (Bakhtyari et al, 2013). 

 

CONCLUSION 
Significant advances in Drug chemistry and ADMET profiling tools have helped decreased the attrition rate of 

compounds entering the clinical phase. Identifying more phenotypic biomarkers may help bring out better drugs 

with reduced toxicity. 

 

Interpro Domain of M. tuberculosis 

 AminoacyltRNAsynthetase Short chain dehydrogenase/ reductase 

 ATP binding region FAD dependent pyridine nucleotide 

Disulphideoxidoreductases 

 Peptidase eukaryotic cysteine S - adenosyl Methionine 

 Peptidase active site IMP dehydrogenase 

 Carboxyl transferase Peptidase S1 and S6 chymotrypsin 

 Phosphoribosyltransferase Glyceraldehyde 3 phosphate dehydrogenase 

 Aldehyde dehydrogenase Dihydropteroate synthase 

 Cytochrome P450 ABC transporter 

 DNA topoisomerase Carbohydrate kinase 

 Zn containing alcohol dH  Ribonucleotidereductase (large subunit) 

 Glycosyltransferase Rhodopsin like GPCR family 

 Aldo/ketoreductase Peptidase M14 

Table 1: List of prioritized genes in application to the problem of TB drug development (Hasan et al, 2006) 

 
Fig 1: Workflow: Pharmacodynamic studies for generation of a lead compound into a drug (adapted from Hughes et 

al, 2011) 
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