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In the modern world, high-rise buildings are in vogue, each year more 

and more large buildings built. One of the most common schemes for 

high-rise buildings is portico system, formed by combination of vertical 

(columns) and horizontal (beams) supporting members. However, as 

building grows in height, it must have enough strength and stiffness to 

withstand lateral loads imposed by wind or moderate earthquakes. Over 

last ten decades, there was therefore significant renewed interest in 

structures stability problem subjected to time-dependent loads. 

Considering dynamic problems in civil engineering field is necessary to 

ensure structure reliability in many applications. 

But dynamics problems study is often complex for inertia forces come 

from structure displacements which in turn depend on structures free 

oscillations frequency. The coincidence of this frequency of free 

oscillation with that of the forced oscillations caused by the wind 

involves the phenomenon of resonance which is very dangerous for the 

structures. It is therefore necessary to know how to determine the 

frequency of the free oscillations of the systems which constitutes the 

starting point for a dynamic study. To do this, the stiffness matrix 

method was used to determine the free oscillation frequencies of the 

multi-storey portico structures. It has been observed, therefore, that the 

frequencies of free oscillations don’t depend on time, neither on the 

amplitude of the oscillations, nor on the phase angle, but rather on the 

rigidity and the mass of the structures. 

 
                 Copy Right, IJAR, 2019,. All rights reserved. 

…………………………………………………………………………………………………….... 

Introduction:- 
A large building essentially consists of several vertical overhangs interconnected by floor slabs (Paz and Leigh, 

2004). The bearing structures of a building support two types of loads: vertical (gravimetric) and horizontal (wind, 

earthquake). Bolotin (1964) affirms that the gravimetric loads are the main loads of a building. According to Chopra 

(1995), under horizontal loads, each cantilever bends around its own axis but deforms in unison with other 

cantilevers due to the stiffness in the plane of the floor slabs. 

 

As the height of building increases, the additional stiffness required to control the deflection, rather than the strength 

of the structural elements, guides the design of the building. In most cases, the vertical loads are static, while the 

horizontal loads have a pronounced dynamic character (Clough and Penzien, 1993). The top of the building being a 
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height above the ground, the dynamic behavior of the latter is comparable to that of a beam with several standard 

masses (Guyan, 1965; Fretzen, 1986; Paz and Leigh, 2004). Thus, for reasons of economy, it is desirable to use a 

suitable structural system to resist lateral loads in addition to gravimetric loads (Biezeno and Grammel, 1939). 

Vibration problems of high-rise buildings subjected to dynamic loads, such as wind loads and seismic loads, have 

generated great interest in research in the field of. Most known methods for solving dynamic problems simplify 

somewhat the parameters of the dynamic computation model corresponding to the real problem. The main 

limitations are as follows:  

1. First of all, the simplification of the calculation is linked to the choice of the type of damping. As a general rule, 

the type of internal friction corresponding to the chosen damping model, or the conservative system, is 

generally analyzed;  

2. Secondly, the restriction refers to the choice of the number of degrees of freedom and the location of the masses 

in the system. Mass dimensions are often neglected (Berman, 1979; Clough, 1993); 

3.  Thirdly, simplifications are related to the modeling of external influences: the reaction of the system to a single 

pulse. Large buildings have masses concentrated on the floors and columns can be practically considered as 

springs without masses (Archer, 1963; Berman, 1979). This simplification makes it possible to replace a 

continuous system with a discrete system with few degrees of freedom. 

 

Real structures dissipate energy when they undergo vibratory motion (J. HAAG,1955). When they undergo a 

vibratory movement when the frequency of the forced oscillations coincides with that of the free oscillations, the 

amplitude will increase to infinity. This phenomenon called resonance is very dangerous for all vibrating systems, in 

this case civil engineering structures, because the materials commonly used are subject to strength limits and in real 

life are subject to structural failures that occur long before extreme amplitudes can be reached. In civil engineering, 

the physical resonance of buildings is a dangerous phenomenon and feared by engineers both for the safety of 

buildings and the safety of the users of these buildings. A particular attention is therefore to be given to this 

phenomenon of resonance and this necessarily requires the knowledge of the values of the free oscillations of the 

vibrating structure. The dynamic study of the systems being dependent on the frequencies of the free oscillations of 

the latter.  Objective of this study is to determine the frequency values of the free oscillations of the stepped 

porticoes with several masses. To do this, this article will first examine a classical element of portico by the force 

method and compare it with the stiffness matrix method proposed in this article in order to prove the accuracy of the 

latter and subsequently extend this method to very complex storied porticoes. Throughout this article, we will 

consider unamortized models. 

 

Method:- 
Governing equation of the dynamic movement 

The systems to be examined being subjected to the action of construction masses and abandoned to themselves after 

excitation by one or of the force (s) external (s) are thus the seat of free oscillations by one or the external force (s) 

are thus the seat of free oscillations (Clough et Penzien, 1993).The equation governing their dynamic movement is 

as follows: 

                                           
   M x K x 0                                                                                                      (1) 

 

The solution of this differential equation (1) is in the form: 

                             
x Asin ( t )                                                                                                     (2) 

 

By deferring (2) to (1) the following equation is obtained: 

                                      2A K M 0                                                                                                (3) 

 

Equation (3) represents a system of n equations with n unknowns which are the components of the vector. A non-

trivial solution (A ≠ 0) is only possible if the determinant (D) of the matrix below is zero. 

                                            2K M 0                                                                                                      (4) 
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Initial  Position 

Deformed  

Since the global stiffness matrices [K] and the mass matrix [M] are positive, it follows that (4) possesses N real roots
2

i  and by developing this determinant (4), we obtain an equation of degree N in 2

i  , where N is the dimension of 

the matrix [K] and [M]: that is to say the degree of freedom of the system.  

                    2K M 0     is in the form :
 
   A I 0    .                                                                   (5) 

 

In mathematics, it is a problem of eigenvalue to which an eigenvector is associated.  is an eigenvalue assimilable to

2

1


 with  which is nothing other than the frequency of the oscillations. The lowest of these frequency values is 

called the fundamental frequency. The determination of these frequency values constitutes the object of this article.  

 

There are three different mathematical methods for the numerical solution of the eigenvalue problem. They all have 

advantages for certain types of problems. The first is a fundamental traditional method which consists in the search 

for determinant, and is linked to the search for the roots of a polynomial. 

 

 

 

Figure 1:-Deformed position and degree of freedom of a portico frame 

 

1-2- Description of the method 

The stiffness matrix method is mainly used for linear static analysis. The development of this method was born in 

the 1940s and is generally considered as the fundamental method of finite element analysis. Linear static analysis is 

appropriate if deflections are small and vary only slowly. Linear static analysis omits time as a variable. This also 

excludes the plastic action and deformations that change the way loads are applied. The stiffness matrix method for 

linear static analysis follows the laws of statics and the laws of the resistance of materials. The method uses matrices 

and matrix algebra to organize and solve the equations of the governance system. Matrices, which are arrays of 

ordered numbers, are subject to specific rules, and can be used to help the solution process in a compact and elegant 

way. Arrays, which are arrays of ordered numbers, are subject to specific rules, and can be used to help the solution 

process in a compact and elegant way. The stiffness matrix method is an analytical method where the main 

unknowns are the displacements of the joints. This method of analysis can be extended to the dynamic analysis of 

systems by first calculating the frequencies of the free oscillations of the porticoes; what is the purpose of this 

article. The stiffness matrix method is the basis of almost all commercial structural analysis programs (Argyris et al., 

1964). This is a specific case of the more general finite element method, which has been partly responsible for the 

latter's development. It is therefore hoped that understanding the basics presented in this article should lead to a 

more successful use of available computational software. 

 

The stiffness matrix method has two approaches: the direct and indirect approach (Bishop et al., 1965). The direct 

approach is the one that will be used in this article because it requires visual recognition of the relationship between 

forces and structural displacements, forces and displacements of elements induced by the charging system applied. 

The indirect approach is mainly used in the development of computer programs to allow automatic correlation 

between displacements.In other words the direct approach allows the users of computational software to better 

understand the concepts involved and the procedure to follow during a computer analysis. In the use of both 

approaches, it is necessary to develop element stiffness matrices, linked to a (local) coordinate system of the 

elements and a structural stiffness matrix linked to a global coordinate system. The organization of the solution 
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requires to identify, number the nodes, and to configure the coordinate system. For each member, select a starting 

node (node 1) and an end node (node 2). We will use an arrow along each member of system to indicate the 

direction of the starting node at the final node. This will establish the local coordinate system for each element. The 

three global degrees of freedom (dof) will then be tagged at each node starting from node A and proceeding 

sequentially. 

 

It should be noted that in flat structures, a node has three degrees of freedom because it has two translations and one 

rotation. Therefore, there are six possible degrees of freedom for a portico frame and the resulting stiffness matrix is 

of the same order. With this method, the counterclockwise moments and counterclockwise rotations are considered 

positive. The positive direction of translation and rotation is also represented at each node and in the presence of a 

building mass. The stiffness matrix of a member is symmetrical and is in the form: 

 

 

3 2 3 2

2 2

i

3 2 3 2

2 2

AE AE
0 0 0 0

L L

12EI 6EI 12EI 6EI
0 0

L L L L

6EI 4EI 6EI 2EI
0 0

L L L L
k

AE AE
0 0 0 0

L L

12EI 6EI 12EI 6EI
0 0

L L L L

6EI 2EI 6EI 4EI
0 0

L L L L

 
 
 
 
 
 
 
 


 
 
 
 

   
 
 

  

                                                 (6) 

E: is the longitudinal elastic modulus or YOUNG modulus of the member material; 

A: is the area of the cross section of a member; 

I: is the moment of inertia of the section; 

L: is the length of a member. 

 

The axes that are suitable for relations with the members are called local axes, but the axes that are convenient for 

treating the structure as a whole are called global axes (Bishop et al., 1965). The displacement and force components 

can be expressed using one of the two previous systems. Stiffness matrices are often derived and defined for a local 

axis system. The derivation of the stiffness matrix for different types of members is probably the most delicate part 

of the stiffness matrix method (Argyris et al., 1964). However, there is a local or global axis system for the structure 

as a whole. We must therefore transform the matrices of the local coordinate system into global coordinate system 

matrices. The relationship between the components in the two axis systems is expressed as a matrix called 

transformation matrix [Ti]. 

 

 i

cos sin 0 0 0 0

sin cos 0 0 0 0

0 0 1 0 0 0
T (7)

0 0 0 cos sin 0

0 0 0 sin cos 0

0 0 0 0 0 1

  
 
  
 
 

  
  

   
 
 
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The stiffness matrix [  ] of a member of a portico in the global coordinate system is in the following form: 

                 
i

T

i i iK T . k . T (8)     

 
1-3- Resolution steps 

The resolution steps by the stiffness matrix method are as follows: 

1. Step 1: Model the structure with a number of members, nodes and choose the global axis system; 

2. Step 2: Numbering nodes (A, B, C, D, ...) and degrees of freedom (dof) of the structure (0 for the prevented ddl, 

and 1, 2, 3, 4, ..., for the others) ; 

3. Step 3: Numbering the members and assign a direction of mileage (an arrow identifies the nodes i and j of a 

member); 

4. Step 4: Introduction into the Excel spreadsheet, geometric characteristics (area, inertia, length) of each member 

and its rotation angle θ, as well as the Young's modulus of the material constituting the member; 

5. Step 5: Formation of nodal transformation matrix [Ti] of each member and calculate its stiffness matrix [Ki] in 

the global axis system using equation (8); 

6. Step 6: Assembly of the overall stiffness matrix of the system (assembly of formed matrices taking into account 

the interconnection between the members); 

7. Step 7: Application of boundary conditions (according to step 2); 

8. Step 8: Formation of reduced stiffness matrix [kr] (by removing the rows and columns of worthless 

displacements), and the matrix of the masses [M] (diagonal matrix); 

9. Step 9: Formation of determinant of oscillations using equation (4); 

10. Step 10: Introduction of frequency value ω = 0.01 in (4) and iteration;  

11. If the determinant (D) changes sign; go to step 11; 

12. Otherwise, continue the iteration until a sign change of the determinant. 

13. Step 11: Stop the iteration as soon as the determinant sign changes and retain the value of the frequency whose 

determinant D> 0. 

14. Step 12: Take into account the positive value of the determinant from which the sign change is observed and 

proceed to a frequency value increment ω =0.0001 in order to improve the accuracy in determining the 

frequencies; 

   

A flowchart for calculating the frequency of free oscillation of the systems has therefore been proposed: 

1.4. Flowchart for calculating the frequency of free oscillations 

 

 
Figure 2: Flowchart for calculating the frequency of free oscillations (  . 
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The algorithm required for calculating the frequencies of the free oscillations of the porticoes (by the stiffness matrix 

method) is represented by the above flowchart. This flowchart shows the important tasks to be performed in order to 

determine the frequency of free oscillations of the systems with as input parameters the geometrical characteristics 

(area; inertia, length) and the mechanical characteristics of the materials constituting the members and as output 

parameter the oscillation frequencies from which the free oscillation frequencies of the system are derived. 

 
1-5- Numerical examples 

The first step will be to consider a fairly simple portico whose oscillations frequency will be determined by the force 

method and by the stiffness matrix method and to compare the results, in order to prove the accuracy of the 

resolution method proposed in this article which is the stiffness matrix method. Then we will consider very complex 

porticoes for which we will determine by the stiffness matrix method the frequencies of the free oscillations and the 

corresponding periods. 

 
1-5-1- Assumptions 

The following assumptions are those to be considered in this study: 

1. Materials constituting the different members of the porticoes are assumed to be elastic; 

2. Porticoes examined are loaded in the plane of their greatest inertia; 

3. Building masses are concentrated in the floors (beam); 

4. Floors have a high stiffness in their plan; 

5. Posts are embedded in the foundation; 

6. Displacements are considered small compared to the dimensions of the elements of the porticoes; 

7. Rotation of masses in space is neglected (2D study); 

8. Frequency values obtained in this study are taken with four decimal places; 

9.  Studied porticoes are assumed to be unamortized; 

10. Porticoes are made of reinforced concrete. 

 

1-5-2- Exercise test 

Consider the simple isostatic portico below supporting a building mass as shown in the figure below (Figure 3). This 

portico having undergone by its mass an excitation by an external force which disappeared after excitation. We want 

to determine the frequency of the free oscillations of this portico. To do this we will determine this frequency by the 

stiffness matrix method and by the force method. The stiffness (EI) is assumed to be constant. The mass can move 

vertically and horizontally, giving it a degree of freedom equal to 2 (dof=2). 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Degree of freedom of the isostatic portico of the test exercise  

 
1-5-2-1-Resolution by the Forces method  

Step 1: Determination of the degree of freedom of the system (dof) of the mass: dof=2 (possibility of movement 

along the axis and along the axis. 
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Step 2: Construction of the unit diagrams in relation to the degree of freedom (the mass is transformed into arbitrary 

and directional unit forces in accordance with the ddl) 

 

 

 

   

  

 
 

 

 

 

 

 

 

 

 

 

 

Figure 4: Diagrams of the bending moments and under unit stress 

 

Step 3: Calculation of canonical coefficients and formation of the determinant of oscillations  

 

The different coefficients being calculated using the integrals of Mӧhr, we will use in this article, the 

VERECHAGUINE method which consists in multiplying the diagrams for the calculations.     

  1 1
11

M M 1 4*4 2 304
B dz ( * *4 4*5*4)

EI EI 2 3 3EI
     ;   

     1 2
12

M M 1 5*5 50
B dz ( *4)

EI EI 2 EI
      ;         2 1

21

M M 1 5*5 50
B dz ( *4)

EI EI 2 EI
      

2 2
22

M M 1 5*5 2 125
B dz ( * *5)

EI EI 2 3 3EI
     

 

Step 4: Formation of general expression of the determinant of free oscillations: 

 

11 12 2

11 22 12 2

21 22

2
2

2 2

2

B m B m 1
0 (B m )(B m ) (B m) 0 avec

B m B m

304 1 50
m m

304 1 125 1 503EI EI
0 ( m )( m ) ( m) 0

50 125 1 3EI 3EI EI
m m

EI 3EI

  
       

   

 


      
 

 

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1-5-2-2-Resolution by matrix stiffness method 

Step 1-2 and 3: Numbering of the nodes (A, B, C, C, D, ...) and the degrees of freedom (dof) of the structure (0 for 

the prevented ddl, and 1, 2, 3, 4, ..., for the others) ; 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Numbering of nodes and degree of freedom of the portico. 

2 2 2 2

2

2 2

2 2 2

2

2 2

304 125 50 1
( m 1)( m 1) ( m) 0
3EI 3EI EI

304 125 1 304 1 125 1 50
m m ( m) m ( ) ( m) 0

3EI 3EI 3EI 3EI EI

1 304 125 1 304 125 50
( ) m m m m m

3EI 3EI 3EI 3EI EI

 
       

 

   
        
     

       
          

        

2

2

2

2 2

2 2

2

2

2 2

2

1

2

0

1 429 1 15500 m
( ) m

3EI 9 EI

429 15500 m
m 4

3EI 9 EI

122041 m

9 EI

304 125 304 125 304 125 50
m m ( m m) 4m *

3EI 3EI 3EI 3EI 3EI 3EI EI

304
2m

3

 
  

 

   
    

    

    
      

    

 
   

 

    
              

 
2

1

2

2 2

2

2 2

2

1 m

134.595 EI125 50
*

EI 3EI EI

304 125 304 125 304 125 50
m m ( m m) 4m *

3EI 3EI 3EI 3EI 3EI 3EI EI 1 m

17.476 EI304 125 50
2m *

3EI 3EI EI

EI
ω =0.0862 rad.

m

 
  

    
      

    
                

    
    

      

1 1

2

EI
s ω =0.2393 rad.s

m

 
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Step 4: Introduction into the Excel spreadsheet, geometric characteristics (area, inertia, length) of each member and 

its rotation angle θ, as well as the Young's modulus of the material constituting the member; 

                         

Table 1.1:-Geometric characteristics of the members 

 

Step 5: Formation of the nodal transformation matrix [Ti] of each member and calculate its stiffness matrix [Ki] in 

the global axis system using equation (8); 

 

Table 1.2:-Local transformation matrices of the members 

 

Table 1.3:-Matrices of local stiffness of the members 

 

Table 1.4:-Stiffness matrices of members in the global system 

Member N°1 AB Unity Member 

N°2 

BC Unity 

L= 5.00 m L= 4.00 m 

A= 1.00 m
2
 A= 1.00 m

2
 

βI=  1 m
4
 βI=  1 m

4
 

E= 1 MN/m
2
 E= 1 MN/m

2
 

   90      0  

Local transformation matrix [T]AB Local transformation matrix [T]BC 

0 1 0 0 0 0 1 0 0 0 0 0 

-1 0 0 0 0 0 0 1 0 0 0 0 

0 0 1 0 0 0 0 0 1 0 0 0 

0 0 0 0 1 0 0 0 0 1 0 0 

0 0 0 -1 0 0 0 0 0 0 1 0 

0 0 0 0 0 1 0 0 0 0 0 1 

Local stiffness matrix [k]AB Local stiffness matrix [k]BC 

0.2 0 0 -0.2 0 0 0.25 0 0 -0.25 0 0 

0 0.096 0.24 0 -0.096 0.24 0 0.1875 0.37

5 

0 -

0.1875 

0.37

5 

0 0.24 0.8 0 -0.24 0.4 0 0.375 1 0 -0.375 0.5 

-0.2 0 0 0.2 0 0 -0.25 0 0 0.25 0 0 

0 -0.096 -0.24 0 0.096 -0.24 0 -

0.1875 

-

0.37

5 

0 0.1875 -

0.37

5 

0 0.24 0.4 0 -0.24 0.8 0 0.375 0.5 0 -0.375 1 

Global stiffness matrix [K]AB Global stiffness matrix [K]BC 

0.096 6.3E-18 -0.24 -0.096 -6.3E-

18 

-0.24 0.2

5 

0 0 -

0.2

5 

0 0 

6.3E-18 0.2 1.5E-17 -6.4E-

18 

-0.2 1.4E-17 0 0.187

5 

0.37

5 

0 -

0.187

5 

0.37

5 

-0.24 1.47E-

17 

0.8 0.24 -1.4E-

17 

0.4 0 0.375 1 0 -

0.375 

0.5 

-0.096 -6.4E-

18 

0.24 0.096 6.4E-18 0.24 -

0.2

0 0 0.2

5 

0 0 
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Step 6: Assembly of the global system stiffness matrix (assembly of the formed matrices taking into account the 

interconnection between the members);  

 

Table 1.5:-Assembly of member stiffness matrices in the global system 

 

 

 

 

 K =  

N° Node A Node B Node C 

1 2 3 4 5 6 7 8 9 

1 0.096 0 -0.240 -0.096 0 -0.240 0 0 0 

2 0 0.2 0 0 -0.200 0 0 0 0 

3 -0.240 0 0.80 0.24 0 0.40 0 0 0 

4 -0.096 0 0.24 0.346 0 0.240 -0.250 0 0 

5 0 -0.2 0 0 0.388 0.375 0 -0.188 0.375 

6 -0.240 0 0.4 0.24 0.375 1.800 0 -0.375 0.5 

7 0 0 0 -0.250 0 0 0.250 0 0 

8 0 0 0 0 -0.188 -0.375 0 0.188 -0.375 

9 0 0 0 0 0.375 0.50 0 -0.375 1.00 
 

Step 7:-Application of boundary conditions (according to step 2); 

 

Table 1.6:-Application of boundary conditions to the global stiffness matrix 
 

 

 

 

 

 K =  

N° Nœud A Nœud B Nœud C 

1 2 3 4 5 6 7 8 9 

1 0.096 0 -0.240 -0.096 0 -0.240 0 0 0 

2 0 0.2 0 0 -0.200 0 0 0 0 

3 -0.240 0 0.80 0.24 0 0.40 0 0 0 

4 -0.096 0 0.24 0.346 0 0.240 -0.250 0 0 

5 0 -0.2 0 0 0.388 0.375 0 -0.188 0.375 

6 -0.240 0 0.4 0.24 0.375 1.800 0 -0.375 0.5 

7 0 0 0 -0.250 0 0 0.250 0 0 

8 0 0 0 0 -0.188 -0.375 0 0.188 -0.375 

9 0 0 0 0 0.375 0.50 0 -0.375 1.00 

 
Step 8: Formation of the reduced stiffness matrix [kr] (by removing the rows and columns of the zero 

displacements), and the mass matrix [M] (diagonal matrix); 

 
Table 1.7:-Formation of the Reduced Stiffness Matrix 

 

 

 

 

 

 Kr =  

 

N° 

Nœud B Nœud C 

1 2 3 4 5 6 

4 5 6 7 8 9 

4 0.346 0 0.240 -0.250 0 0 

5 0 0.388 0.375 0 -0.188 0.375 

6 0.24 0.375 1.800 0 -0.375 0.5 

7 -0.250 0 0 0.250 0 0 

5 

-6.3E-

18 

-0.2 -1.4E-

17 

6.3E-18 0.2 -1.4E-

17 

0 -0.18 -

0.37

5 

0 0.187

5 

-

0.37

5 

-0.24 1.47E-

17 

0.4 0.24 -1.4E-

17 

0.8 0 0.375 0.5 0 -

0.375 

1 
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8 0 -0.188 -0.375 0 0.188 -0.375 

9 0 0.375 0.50 0 -0.375 1.00 
 

Table 1.8:-Formation of the mass matrix M 
 

 

 

 

 M =  

N° Nœud B Nœud C 

4 5 6 7 8 9 

4 0 0 0 0 0 0 

5 0 0 0 0 0 0 

6 0 0 0 0 0 0 

7 0 0 0 0 1 0 

8 0 0 0 0 0 0 

9 0 0 0 0 0 1 
 

Step 9: Formation of the oscillation determinant using equation (4);   

Step 10: Introduction of the frequency value ω=0.01 in (4) and iteration; 

 

Tables 1.9:-below presents the calculation of the determinant (D) and the value of the frequency leading to the 

change in sign of the determinant (D). 

 

Table 1.9:-Frequency values (ω) and corresponding determinants 

 

 

 

 
Comparison of the results obtained for the test exercise 

From the application of the two methods for the determination of the frequencies of the free oscillations of the 

proposed test exercise, the following comparative table appears: 

 

Table 2.1:-Comparative Frequencies Values of the Free Oscillations (ω) of the Test portico 

Force Method Stiffness Matrix Method 

Frequencies Values (rad.S
-1

) Frequencies Values (rad.S
-1

) 

1  EI
0.0862

m
 

1  EI
0.0862

m
 

N° Frequencies 

(   
Determinant 

(D) 

    

1 0.01 4.4317E-05  

2 0.02 4.2281E-05  

3 0.03 3.8930E-05  

- - -  

7 0.07 1.4029E-05  

8 0.08 5.5664E-06    

9 0.09 -3.4484E-06 

10 0.10 -1.2799E-05  

- - -  

21 0.21 -5.0465E-05  

22 0.22 -3.7710E-05  

23 0.23 -2.0163E-05    

24 0.24 2.7483E-06 

25 0.25 3.1621E-05  

 1 0.08 0.09      2 0.23 0.24    

Frequency determinant Frequency determinant 

0.08 5.5664E-06 0.23 -2.016E-05 

0.0801 5.4786E-06 0.2301 -1.996E-05 

0.0802 5.3908E-06 0.2301 -1.975E-05 

  - - 

- - - - 

0.0860 2.1047E-07 0.2388 -3.037E-07 

0.0861 1.1977E-07 0.2389 -5.265E-08 

0.0862 2.9031E-08 0.239 1.9902E-07 

0.0863 -6.175E-08 0.2391 4.5128E-07 

- -   

- -   

- - - - 

0.087 -6.9839E-

07 

0.24 2.7483E-06 

- - - - 

- - - - 
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0
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0.00025

0.0003

0.00035

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

D
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m
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t 

Frequency ω 

Exercise test 

2  EI
0.2393

m
 

2  EI
0.2390

m
 

 

The comparative table above shows us that the determination of the free oscillation frequency values gives the same 

results by the force method and by the stiffness matrix method proposed in this article. However, according to 

several authors for a tall building, a tall tower or a chimney, the first response mode generally represents the essence 

of the answer and the second mode is only considered for possible problems of discomfort due to accelerations. This 

test exercise therefore testifies to the accuracy of the matrix method proposed in this paper and makes this method 

reliable for determining the free oscillation frequencies of vibrating systems. 

 

The analysis of the determinant-frequency curve above shows the variation of the determinants as a function of the 

oscillation frequencies. We easily notice that this curve coincides with the x-axis at two different places. The 

projection of these points on the x-axis allows us to obtain the two oscillation frequencies which are here the free 

oscillation frequencies of the studied portico. After the second passage of the curve on the abscissa axis, it is easy to 

notice that the latter grows indefinitely, which shows that the free oscillation frequencies of the system have already 

been reached. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6:-Determinant curve-frequency of the test exercise 

 

Given the accuracy of the proposed method, its reliability and, above all, its ease of execution in a computer 

program, this method will therefore be extended to very complex step porticoes in order to determine on them the 

values of the frequencies of the free oscillations and consequently the periods of the associated oscillations. 

 

1-5-3- Numerical Examples (Cases of Stepped porticoes) 

Let us consider the porticoes below which are subject to the action of two or more masses as shown in Figure 6. 

These porticoes which have undergone through their building masses, the excitation caused by external forces which 

disappeared after excitation.  

 

The numerical values to be considered are as follows: g=9.81m.s
-2

, Q= 6.5kN, E= 2.10
5
MPa, A=450cm², Iz = 

33750cm4. b=15cm, h=30cm (for porticoes I to IV) and b=20cm, h=40cm (for porticoes V and VI). It is now 

desired to determine the frequencies of the free oscillations of these porticoes using the stiffness matrix method and 

then determine the corresponding periods at these frequencies 

The categories of porticoes to be studied are: 
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Figure 7: Different types of porticoes to be studied (Porticos I, II and III). 
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Figure 8:-Different types of porticoes to be studied (Porticoes IV, V and VI).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10:-Numbering of nodes and degree of freedom (dof) of porticoes to be studied (Porticoes IV, V and VI). 

 

Results:- 

For the calculation of the frequencies of the free oscillations of the porticoes in Figure 7 and Figure 8, based on the 

flowchart for calculating the frequencies of the free oscillations using the stiffness matrix method proposed above 

and Figure 9 and Figure 10, it is easy to reach step 12, which provides the following results: 

 

Table 2.2: Frequency values of oscillations (ω) of portico I and corresponding determinant 

 1 0.20 0.21      2 0.42 0.43     3 0.43 0.44     4 0.55 0.56    

Frequency determinant Frequency determinant Frequency determinant Frequency determinant 

0.20 8.525E-14 0.42 -1.349E-08 0.43 7.327E-07 0.55 -9.826E-07 
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By introducing the given numerical values, we obtain the following values of the parameters of these porticoes 

which are considered as oscillators. 

 

1

11 8
1

1 3

EI Q
0.2017 avec m

m g

2.10 .33750.10
0.2017 64.3777rad.S

6,5.10

9,81




  

  
                                                               (9) 

                     

1

1

2 2
T 0.0976S

64.3777

 
  


                                                                                         (10) 

                      

1
1 Z

64.377
f 10.246H

2 2


  

 
                                                                                        (11)                                                                                                    

These parameters, which are the frequencies of free oscillations and periods of each of the porticoes in Figure 7 and 

Figure 8, are summarized in the following tables: 

 

Table 2.3:-Numerical values of the parameters of portico I 

Frequency (rad.S
-1

) Frequency (rad.S
-1

) Period (S) Frequency (HZ) 

   
0.2017

EI

m
 

64.3777 0.0976 10.2460 

   
0.4201

EI

m
 

134.0857 0.0469 21.3404 

   
0.4383

EI

m
 

139.8947 0.0449 22.2649 

   
0.5504

EI

m
 

175.6743 0.0358 27.9594 

 

Table 2.4:-Numerical values of the parameters of portico II 

0.2001 2.551E-06 0.4201 2.551E-09 0.4301 7.313E-07 0.5501 -7.002E-07 

0.2002 2.394E-06 0.4202 1.842E-08 0.4302 7.296E-07 0.5502 -4.165E-07 

  - - - - - - 

- - - - - - 0.5504 1.550E-07 

0.2015 3.746E-07 - - 0.4381 3.265E-08 0.5505 4.428E-07 

0.2016 2.202E-07 - - 0.4382 1.663E-08 0.5506 7.320E-07 

0.2017 6.597E-08 0.4208 1.101E-07 0.4383 4.305E-10 0.5507 1.023E-06 

0.2018 -8.813E-08 0.4209 1.248E-07 0.4384 -1.595E-08 0.5508 1.314E-06 

0.2019 -2.420E-07 0.421 1.393E-07 0.4385 -3.251E-08 0.5509 1.608E-06 

- - - - 0.4386 -4.925E-08 - - 

- - - - - - - - 

- - - - - - - - 

- - - - 0.44 -3.024E-07 - - 

- - - - - - 0.56 3.454E-05 

Frequency (rad.S
-1

) Frequency (rad.S
-1

) Period (S) Frequency (HZ) 

   
0.3397

EI

m
 

108.4240 0.0580 17.2562 

   
0.4501

EI

m
 

143.6609 0.0437 22,8643 
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Table 2.5:-Numerical values of the parameters of portico III 

 
Table 2.6:-Numerical values of the parameters of portico IV 

 

Table 2.7:-Numerical values of the parameters of portico V 

   
0.7689

EI

m
 

245.4141 0.0256 39.0589 

   
0.8082

EI

m
 

257.9577 0.0244 41.0552 

Frequency (rad.S
-1

) Frequency 

(rad.S
-1

) 

Period (S) Frequency (HZ) 

   
0.3283

EI

m
 

104.7854 0.0600 16.6771 

   
0.4023

EI

m
 

128.4044 0.0489 20.4362 

   
0.4937

EI

m
 

157.5770 0.0399 25.0792 

   
0.6578

EI

m
 

209.9537 0.0299 33.4152 

   
0.7440

EI

m
 

237.4667 0.0265 37.7940 

Frequency (rad.S
-1

) Frequency (rad.S
-1

) Period (S) Frequency (HZ) 

   
0.3170

EI

m
 

101.1787 0.0621 16.1031 

   
0.4769

EI

m
 

152.2149 0.0413 24.2257 

   
0.4918

EI

m
 

156.9706 0.0400 24.9826 

   
0.6162

EI

m
 

196.6760 0.0319 31.3020 

   
0.7351

EI

m
 

234.6260 0.0268 37.3419 

Frequency (rad.S
-1

) Frequency (rad.S
-1

) Period (S) Frequency (HZ) 

   
0.3133

EI

m
 

177.7737 0.0353 28.2936 

   
0.4359

EI

m
 

247.3398 0.0254 39.3654 

   
0.4997

EI

m
 

283.5414 0.0222 45.1270 

   
0.5428

EI

m
 

307.9974 0.0204 49.0193 
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Table 2.8:-Numerical values of the parameters of portico VI 

 

Table 2.9:-Fundamental frequency values of the examples studied 

 

   
0.9034

EI

m
 

512.6102 0.0123 81.5845 

   
0.9822

EI

m
 

557.323 0.011 88.7007 

Frequency (rad.S
-1

) Frequency (rad.S
-1

) Period (S) Frequency (HZ) 

   
0.1722

EI

m
 

97.7103 0.0643 15.5511 

   
0.2406

EI

m
 

136.5221 0.0460 21.7282 

   
0.2761

EI

m
 

156.6656 0.0401 24.9341 

   
0.3317

EI

m
 

188.2143 0.0334 29.9552 

   
0.4024

EI

m
 

228.2744 0.0275 36.3310 
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 Frequency Frequency (rad.S
-1

) Period Frequency  

(Hz) 

Exercise Test 
0.0862

EI

m
 

27.5129 0.2284 4.3788 

Portico I 
0.2017

EI

m
 

64.3777 0.0976 10.2460 

Portico II 
0.3397

EI

m
 

108.4240 0.0580 17.2562 

Portico III 
0.3283

EI

m
 

104.7854 0.0600 16.6771 

Portico IV 
0.3170

EI

m
 

101.1787 0.0621 16.1031 

Portico V 
0.3133

EI

m
 

177.7737 0.0353 28.2936 

Portico VI 
0.1722

EI

m
 

97.7103 0.064 15.5511 
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Figure 11: Determinant -Frequency curves of the 

stepped porticoes studied. 

 

Discussion:- 
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The analysis of the curves in Figure 11 shows the variation in the frequency of free oscillations as a function of the 

determinant of the oscillations. We easily notice that these curves coincide with the abscissa axis at different points 

corresponding to the number of degrees of freedom of each system. The projection of these points on the abscissa 

axis allows us to obtain the oscillation frequencies which are nothing other than the free oscillation frequencies of 

each of the studied porticoes. We also notice that the curves increase indefinitely after their last passages through the 

abscissa axis, which shows that the free oscillation frequencies of the system have already been reached. Table 2.9 

summarizes within it the value of the lowest frequencies of the systems examined and the values of the associated 

periods. These frequencies are the fundamental frequencies with which it will be necessary to make a dynamic 

study. If these values are different from the frequencies of the forced oscillations, it can be stated that these systems 

studied above don’t risk the phenomenon of resonance. From all the above we can see that it is not easy to determine 

the frequency of oscillations by the analytical method seen all the steps to be addressed before forming the 

determinant of free oscillations. The other problem that complicates the determination of free oscillations is the 

tracing of unit purity. This then raises the problem of stepped gantries (hyperstatic gantries) with several masses. 

From the analytical resolution approach (force method), it is clear that this method will be tedious and may also be 

ineffective due to the risk of errors in its resolution. 

 

From all the above we can observe that it is not easy to determine the frequency of oscillations by the analytical 

method seen all the steps to be approached before forming the determinant of free oscillations. The other problem 

that complicates the determination of free oscillations is the plot of unitary patterns. This poses the problem of 

stepped porticoes (hyperstatic porticoes) with several masses. According to the method of analytical resolution 

(forces method), it is clear that this method will be tedious and may also be inoperative because of the risk of errors 

involved in its resolution. To circumvent the difficulty related to the analytical resolution, the stiffness matrix 

method was used, based on the d'Alembert principle. Thus, as we can see, stiffness matrix method completely 

dispenses with the drawing of unitary drawings and the calculation of canonical coefficients because, here, it is 

simply a matter of a formal operation of matrices. 

 

From the results of Exercise Test treated, it is clear that the determination of the frequencies of free oscillations by 

the analytical method (force method) and by the method developed in this article called stiffness matrix method 

gives exactly the same fundamental frequency values of the free oscillations. This confirms the statements of (Paz 

and Leigh, 2004) and many authors. Definitely, free oscillation frequencies which are nothing other than the 

parameters of the vibrating system are necessary to carry out a dynamic study. These free oscillation frequencies 

don’t depend on time, oscillation amplitude nor the phase angle, but rather on the mass of the system and its 

stiffness. It is the same for the periods associated with these frequencies. 

 

Conclusion:- 
To perform a dynamic analysis, many structures can be modeled entirely or partially in the form of porticoes with 

constant or variable section. In this study the frequencies of the free oscillations of the unamortized stepped 

porticoes with several construction masses were determined by the stiffness matrix method. This calculation method 

makes it possible to find the natural frequencies in linear analysis of engineering mechanical systems, which 

frequencies can be compared with the frequencies of forced oscillations in order to conclude whether the structure is 

subject to resonance or not. 

 

The natural frequency values acquired with this method are very close to the actual results obtained analytically. 

These values of free oscillation frequencies can be obtained by analytical solutions of the problem, but this takes 

more time and may be tedious or even ineffective due to the risk of errors in their resolution. The application of the 

stiffness matrix method in the determination of the frequencies of free oscillations of systems is very advantageous 

because of the reliability of the results obtained, its ease of execution and above all the time saved during the study 

phase.   

 

Eigenvalues, i. e. the frequencies of free oscillations, play a fundamental role in determining the dynamic behavior 

of vibrating systems and in particular in civil engineering structures and therefore deserve particular attention, which 

requires the application of a method that is quick and easy to implement. 

 

 

Abreviations List 
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m = Mass of the structure 

C = Amplitude of oscillations 

[  ] = Stiffness matrix of each member (local system) 

[ ] = Matrix of the masses of the structure 

(D) = Determining oscillations 

dof = Degree of freedom 

x   = Acceleration 

x   = displacement 

 rK   = Reduced rigidity matrix 

 K   = Matrix of global rigidity 

2D = Dimension 2 

E = Longitudinal elasticity module 

A = Area of the cross section of the member 

I = Moment of inertia of the section 

L = Length of  the member 

[Ti] = Transformation Matrix 

g = Gravity acceleration 

b = Base 

EI = Stiffness 

Cste = Constant 

u   = Axial displacement 

v   = Lateral displacement 

X = Horizontal axis (global coordinate) 

Y = Vertical axis (global coordinate) 

x = Horizontal axis (local coordinate) 

y = Vertical axis (local coordinate) 

h = Height 

S = Second 

T = Period 

Q = Load of the structure 

ZI   = Moment of inertia 

Hz = Hertz 

rad = Radian 

S = Second 

     Indices and  Exhibitors 

T = Matrix Transposed 

i   = Node Number 

r   = Reduce 

Z   = Inertia axis 

        Greek Symbols 

  = Angle of rotation 

  = Frequency of free oscillations 

  = Phase angle 
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