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With rapid advancements in the area of mobile robotics and industrial 

automation, a growing need has arisen towards accurate navigation and 

localization of moving objects. Camera based motion estimation is one 

such technique which is gaining huge popularity owing to its simplicity 

and use of limited resources in generating motion path. In this paper, an 

attempt is made to introduce this topic for covering different aspects of 

vision based motion estimation task.Visual odometry (VO) is the 

process of estimating the egomotion of an agent (e.g., vehicle, human, 

and robot) using only the input of a single or multiple camera attached 

to it. Application domains include robotics, wearable computing, 

augmented reality, and automotive. The advantage of VO with respect 

to wheel odometry is that VO is not affected by wheel slip in uneven 

terrain or other adverse conditions. It has been demonstrated that 

compared to wheel odometry, VO provides more accurate trajectory 

estimates, with relative position error ranging 

from 0.1 to 2%. This capability makes VO an interesting supplement to 

wheel odometry and, additionally, to other navigation systems such as 

global positioning system (GPS), inertial measurement units (IMUs), 

and laser odometry (similar to VO, laser odometry estimates the 

egomotion of a vehicle by scan-matching of consecutive laser scans). In 

GPS-denied environments, such as underwater and aerial, VO has the 

utmost importance. 
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Introduction:- 
With rising automation in different engineering fields, mobile robotics is gaining huge popularity. The unmanned 

vehicle is one such proliferating example that is expanding its fleet in different applications ranging from 

commercial to strategic use. One of the simplest mechanisms to estimate the motion of a terrestrial vehicle is to use 

wheel encoders. However, these have limited usage in ground vehicles and suffer from inaccuracies that occur due 

to wheel slippage during movement in muddy, slippery, sandy or loose terrains. The errors arising at each instant 

gets accumulated over time and the estimated pose drifts in proportion to the distance traveled [1]. Traditional 

navigation approaches such as inertial navigation systems (INS), the global positioning system (GPS), SONAR, 

RADAR, and LIDAR are currently in use for different applications [2]. Unavailability of GPS signals in an indoor 

and under-surface environment, unacceptable high drift using inertial sensors during extended GPS outages, issues 

of possible confusion with nearby robots for SONAR & RADAR, and the line of sight requirement for laser-based 

systems are some of the limitations associated with these navigation systems. One of the promising solutions lies in 
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the art of visual odometry that helps in estimating motion information with the help of cameras mounted over the 

vehicle.  

 

The onboard vision system tracks visual landmarks to estimate rotation and translation between two-time instants. 

The art of vision-based navigation is inspired by the behavior of a bird which relies heavily on its vision for 

guidance and control [3]. The initial works on estimating motion from a camera by Moravec has helped in 

establishing the current visual odometry (VO) pipeline [4]. Simultaneous localization and mapping (SLAM), a 

superset of VO, localizes and builds a map of its environment along with the trajectory of a moving object [5]. 

However, our discussion in this paper is limited to visual odometry, which incrementally estimates the camera pose 

and refines it using optimization technique. A visual odometry system consists of a specific camera arrangement, the 

software architecture and the hardware platform to yield camera pose at every time instant. The camera pose 

estimation can be either appearance or feature based. The appearancebased techniques operate on intensity values 

directly and matches template of sub-images over two frame or the optical flow values to estimate motion [6]. The 

feature-based techniques extract distinct interest points that can be tracked with the help of vectors describing the 

local region around the key-points. These techniques are dependent on the image texture and are generally not 

applicable in texture-less or low texture environments such as sandy soil, asphalt, etc. [7]. The VO technique can 

also be classified as geometric and learning based. The geometric VO techniques are the ones that explore camera 

geometry for estimating motion whereas the learning-based VO scheme trains regression model to estimate motion 

parameter when fed with labeled data [8-11]. The learning-based VO technique does not require the camera 

parameters to be known initially and can estimate trajectories with correct scale even for monocular cases [12]. The 

VO scheme can be implemented either with a monocular, stereo, or RGB-D camera depending on the system design. 

Stereo VO mimics the human vision system and can estimate the image scale immediately unlike monocular VO. 

However, stereo camera systems require more calibration effort and stringent camera synchronization without which 

the error propagates over time.  

 

The monocular camera is preferred for inexpensive and small form factor applications such as phone, laptop, etc. 

where the mounting of two cameras with a specified baseline is not always feasible. Some of the approaches that 

aimed to recover scale information for monocular VO are the usage of IMU information [13-15], optimization 

approach during loop closure [16-17], and incorporating known dimensional information from walls, buildings, etc. 

[16-18]. An RGB-D camera provides color and depth information for each pixel in an image. The RGB-D VO starts 

with the 3D position of feature points which are then used to obtain transformation through iterative closest point 

algorithm [19-22]. The VO scheme has found its major application in the automobile industry in driver assistance 

and autonomous navigation [23-25]. One of the applications of visual odometry has been to estimate vehicle motion 

from the rearparking camera and use this information with GPS to provide accurate localization [26-28]. The task of 

visual servoing[29-30] (Moving the camera to a desired orientation) is very similar to the visual odometry problem 

requiring pose estimation for a different purpose [31-33]. These schemes are not only useful for navigation of rovers 

on surfaces of other planets such as Mars [34] but are also useful for tracking of satellites that needs to be repaired 

using a servicer [35]. Although these VO techniques have shown promising results for variety of these applications, 

they are sensitive to environmental changes such as lighting conditions, surrounding texture, the presence of water, 

snow, etc. 

 

Some of the other conditions that lead to poor tracking data are motion blur, the presence of shadows, visual 

similarity, degenerate configuration, and occlusions. Along with these, some manmade errors also creep into the 

data during image acquisition and processing steps such as lens distortion and calibration, feature matching, 

triangulation, trajectory drift due to deadreckoning which lead to outliers. Therefore, the VO schemes need to be 

robust and have the ability to manage these issues efficiently. In order to handle the environmental conditions, 

different techniques have been proposed in the literature such as the usage of NIR cameras for dark environment 

[16-19] or usage of rank transform to handle lighting condition [20-23]. Kaess et al. handle data degeneration by 

dividing the image into two clusters based on disparity and computing rotation and translation with distant and 

nearby objects, respectively [36]. Several outlier rejection schemes have been proposed in the literature of which 

RANSAC and its different variants are very commonly used [37]. 

 

Research Pipeline:- 
1.1 Preprocessing:- 
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The input images are in Bayer format from which color images were recovered using the demosaic function with 

GBRG alignment. Then image frames were undistorted. For applications such as Visual Odometry, it is important to 

know the real-world location of points since the nonlinear nature of the lens distortion makes the problem 

challenging. 

 

1.2 Extraction of Camera Parameters:- 

Intrinsic matrix of the camera is calculated using the MATLAB function ReadCameraModel.m. The function gives 

the values of focal length ( fx and fy ) and Principal point offset ( cx and cy ). 

 

1.3 Feature detection and Correspondence:- 

SURF feature detector was used for detecting features. Then descriptor or feature vectors were extracted using the 

extractFeatures function of MATLAB computer vision toolbox. match features function was used to locate the point 

with matching features. 

 

1.4 Estimation of Fundamental matrix:- 

Estimating the fundamental matrix is the key step involved in the whole pipeline. The 8-point normalized algorithm 

was implemented to obtain the fundamental matrix. Using the matching points, a RANSAC function was 

implemented to randomly sample 8 set of matching points and checking the score of the resulting matrix with 

reference to other matching points. A fitness score was used to update the value of the fundamental matrix. The 

perpendicular distance of the matching point from the epipolar line is computed. If the distance lies within the 

threshold selected, we increment the score by 1. Thus, the fundamental matrix gets updated if its score is greater 

than the earlier score.[27-28] 

 

1.5 Estimation of Essential matrix:- 

Essential Matrix is computed after this by using the camera intrinsic and Fundamental matrix. 

It is made sure that the rank of the matrix is two by only keeping two singular values in the 

diagonal matrix of the svd. MATLAB code snippet is given below : 

 

 
 

1.6 Extracting camera pose:- 

For a given essential matrix E = U diag(1, 1, 0)V T , and first camera matrix P 1 = [I|0], there 

are four possible choices for the second camera matrix P2 namely: P 2 = [U W V T | + u3] or 

[U W V T | − u3] or [U W T V T | + u3] or [U W T V T | − u3] 

where W is orthogonal matrix equal to [0 -1 0;1 0 0;0 0 1]. [9-11] 

 

1.7 Selection of correct pose:- 

Now we need to select one correct pose out of 4 poses derived from previous steps. I have used the constrained 

which is specific for this project to estimate the correct pose  

1. Assuming that the car is moving forward only, we can filter out the transform which has positive z translation. 

2. Rotation and Translation condition around y-axis: For the current scenario, rotationcan be assumed to be only 

around the y-axis. So that we can filter out the rotation matrix whose rotation component along other axes is 

approximately zero. While selecting the correct pose, the pose with minimum y translation is also one of the 

conditions utilized in computing the correct pose. 

 

Finally, if none of the poses are able to satisfy all the conditions then pose of the world frame 

is selected as a correct pose. 
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Camera pose update:- 

The last step before getting the final camera pose is updating the pose with respect to the previous frame. For 

updating the pose of the first frame we use the pose of the world frame and then subsequent frames use the pose of 

previous frames. A simple equation for that is given below: 

R_next = R_current × R_next 

t_next = t_current + R_current × t_next 

Result and Discussion:- 
The Plot of the position of the camera center (for each frame) based on the rotation and translation parameters 

between successive frames thus obtained is as shown in fig 1-fig 5 and the final plot is shown in fig 6: 

 

 
Fig 1:- Case 1 Plot of the camera position in x-z plane 

 

 
Fig 2:- Case 2 Plot of the camera position in x-z plane 
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Fig 3:- Case 3 Plot of the camera position in x-z plane 

 

 
Fig 4:- Case 4 Plot of the camera position in x-z plane 
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Fig 5:- Case 5 Plot of the camera position in x-z plane 

 

 
Fig 6 :- Final Plot of the camera position in x-z plane 

 

The world-z-direction is forward and world-X direction is towards the right. The camera position is changing as per 

car movement and all the hard right turn can be easily seen in the plot, though drift is there in the value of z-axis. 

 

Comparison with output from MATLAB functions:- 

All the steps of the pipeline till feature detection is same in this case. Fundamental matrix is calculated using the 

function estimateFundamentalMatrix, which also gives index of inliers points. Only these inlier points are used to 

calculate the realtive pose using relativeCameraPose function. The pose obtained is updated as previous to give the 

final camera pose. 
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Fig 7 :- Final Plot of the camera position in x-z plane 

 

The experimental video can be found here: https://www.youtube.com/watch?v=jjG6oBL6SnM&feature=youtu.be 

 

Conclusions:- 
This research provide a holistic picture of the visual odometry technique encompassing different branches of this 

tree. The paper starts with an introduction to the motion estimation schemes and their wide applications in different 

engineering fields. Based on the experimental result on the real car. Significant improvement can been seen in the 

plot obtained by using MATLAB functions. Turns are sharp and movement along z axis is also greater. The car also 

reaches the point it started (as it is the ground truth). 
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