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Introduction:-  

The class of asymptotically nonexpansive mapping, introduced by Goebel and Kirk [3] in    1972, is an important 

generalization of the class of nonexpansive mapping.They proved that       if C is a nonempty closed and bounded 

subset of a uniformly convex Banach space, then eve-    ry asymptotically nonexpansive self mapping of C has a 

fixed point. 

 

There are number of papers dealing with the approximation of fixed points /common fixed  points of asymptotically 

nonexpansive and asymptotically quasi nonexpansive mappings in uniformly convex Banach spaces using modified  

Mann and Ishikawa iteration processes and have been studied by many authors.( see, e.g.,[10,11,15,16,17,18,21,22) 

  

The concept of ∆ convergence in a general metric space was introduced by Lim 9[9]. In 2008, Kirk and Panyanak 
[7] used the notion of convergence introduced by Lim [9] to prove in                   the CAT(0) space and analogous of 

some Banach space results which involve weak convergence. Further, Dhompongsa and Panyanak [2] obtained 

∆ convergence theorems for the Picard, Mann and Ishikawa iterations in a CAT(0) space. 

  
A nonlinear framework for fixed point theory is a metric space embedded with a convex structure. The class of 

hyperbolic spaces, nonlinear in nature, is a general abstract theoretic setting with rich geometrical structure formetric 

fixed point theory. The study of hyperbolic spaces has been largely motivated and dominated by questions about 

hyperbolic groups, one      of the main objects of study in geometric group theory. 

 

In recent years, Yang and Zhao [25] studied the strong and ∆convergence theorems for total asymptotically 

nonexpansive nonself-mappingsin CAT(0) spaces. Wan[23] proved some ∆ convergence theorems in a hyperbolic 

space, in which a mixed Agarwal-O'Regan-Sahu type iterative scheme for approximating a common fixed point of 

totally asymptotically nonexpan- 

sive mappings was constructed. Li and Liu [12] modified  a classical Kuhfittig iteration algorithm in the general set 

up of hyperbolic space, and prove a ∆ convergence theorem for an implicit iterative scheme. 

http://www.journalijar.com/
http://dx.doi.org/10.21474/IJAR01
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In this paper, we work in the setting of hyperbolic spaces introduced by Kohlenbach [13], which  is more restrictive 

than the hyperbolic space introduced in Goebel and Kirk [5] and more general than the hyperbolic space in Reich 

and Shafrir[14]. 

 

Concretely, (𝑋, 𝐷,𝑊) is called a hyperbolic space if (𝑋, 𝐷) is a metric space and  𝑊 ∶ 𝑋 × 𝑋 ×  0,1  → 𝑋 is a 
function satisfying 

 

(1.1) 𝑑 𝑧,𝑊 𝑥, 𝑦, 𝛼   ≤  𝛼𝑑 𝑧, 𝑥 +  1 − 𝛼 𝑑 𝑧, 𝑦 ; 

(1.2) 𝑑 𝑊 𝑥, 𝑦, 𝛼 ,𝑊 𝑥, 𝑦, 𝛽   = 𝛼 − 𝛽 𝑑 𝑥, 𝑦 ; 
(1.3) 𝑊 𝑥, 𝑦, 𝛼  = 𝑊 𝑦, 𝑥, 1 − 𝛼  

(1.4) 𝑑 𝑊 𝑥, 𝑧, 𝛼 ,𝑊 𝑦, 𝑤, 𝛼  ≤  1 − 𝛼 𝑑 𝑥, 𝑦 + 𝛼 𝑑 𝑧, 𝑤  
 

for all 𝑥, 𝑦, 𝑧,𝑤 ∈ 𝑋 and 𝛼 , 𝛽 ∈ [0,1].A non empty subset 𝐶 of a hyperbolic space𝑋 is convex if 

𝑊 𝑥, 𝑦, 𝛼 ∈ 𝑋 ∀𝑥, 𝑦 ∈ 𝑋  and 𝛼 ∈ [0,1]. The class of hyperbolic spaces contains normed spaces and convex 

subsets thereof, the Hilbert ball equipped with the hyperbolic metric [4], Hadamardmanifolds as well as CAT(0) 

spaces in the sense of Gromov [1]. 

 

An important example of a hyperbolic space is the open unit ball 𝐵𝐻 in a real Hilbert space H is as follows. 

Let 𝐵𝐻  be the opeh unit ball in 𝐻. Then  

𝐾𝐵𝐻
 𝑥, 𝑦 = 𝑎𝑟𝑔𝑡𝑎𝑛𝑕 1 − 𝜎 𝑥, 𝑦  

1

2, 

 

 

where 

𝜎 𝑥, 𝑦  =
 1− 𝑥 2  1− 𝑦 2 

 1− 𝑥,𝑦  2
 

for all 𝑥, 𝑦 ∈ 𝐵𝐻  , defines a metric on 𝐵𝐻  (also known as Kobayashi distance). 

 

A hyperbolic space X is uniformly convex if for 𝑢, 𝑥, 𝑦 ∈ 𝑋, 𝑟 > 0 and𝜀 ∈ (0,1], their exists         𝛿 ∈ (0,1], such 

that 

𝑑  𝑊  𝑥, 𝑦,
1

2
 , 𝑢 ≤  1 − 𝛿 𝑟, 

provided that d 𝑥, 𝑢 ≤ 𝑟, 𝑑 𝑦, 𝑢 ≤ 𝑟 and 𝑑 𝑥, 𝑦 ≥ 𝜀𝑟. 

 

A map 𝜂:  0, +∞ ×  0,2 → (0,1] is called modulus of uniform convexity if 𝛿 =  𝜂 𝑟 ,∞  for given  𝑟 > 0   . 

Besides , 𝜂 is a monotone if it decreases with r, that is, 

𝜂 𝑟2  , 𝜀 ≤ 𝜂 𝑟1  , 𝜀 , 𝑐𝑟2 ≥ 𝑟1  . 
 

Let C be a nonempty subset of a metric space (𝑋, 𝑑). A mapping 𝑇: 𝐶 → 𝑋 is said to be nonexpansive if 

𝑑(𝑇𝑥, 𝑇𝑦)  ≤ 𝑑(𝑥, 𝑦), ∀𝑥, 𝑦 ∈ 𝐶 . 

 

Recall that C is said to be a retraction of 𝑋 if there exists a continuous map 𝑃: 𝑋 → 𝐶 such that 𝑃𝑥 = 𝑥, ∀ 𝑥 ∈ 𝐶.A 

map 𝑃: 𝑋 → 𝐶 is said to be retraction if 𝑃2 = 𝑃. Consequently, if P is a retraction, then 𝑃𝑦 = 𝑦 for all 𝑦  in the range 

of 𝑃. 
Let C be a nonempty and closed subset of a metric space (𝑋, d), A map 𝑃: 𝑋 → 𝐶 is a retraction , 

a mapping  𝑇: 𝐶 → 𝑋 is said to be 

 

(1 ) asymptotically nonexpansive nonself- mapping2[10] if there exists a sequence  𝑘𝑛   ⊂ [1,∞) with lim𝑛→∞ 𝑘𝑛  =1, 

such that  

 

𝑑 𝑇 𝑃𝑇 𝑛−1𝑥, 𝑇 𝑃𝑇 𝑛−1𝑦 ≤ 𝑘𝑛𝑑 𝑥, 𝑦 , ∀ 𝑥, 𝑦 ∈ 𝐶, 𝑛 ≥ 1. 

(2) A nonself mapping  is said to be uniformly L-Lipschitzian if there exists a constant   L ≥ 0  such that 

𝑑 𝑇 𝑃𝑇 𝑛−1𝑥, 𝑇 𝑃𝑇 𝑛−1𝑦 ≤ 𝐿𝑑 𝑥, 𝑦 , ∀ 𝑥, 𝑦 ∈ 𝐶, 𝑛 ≥ 1. 

 

(3) Generalized asymptotically nonexpansive (see [19]) if there exist non negative real sequences {𝑘𝑛  } and {𝑐𝑛} 

with 𝑘𝑛≥1, lim𝑛→∞ 𝑘𝑛  =1and lim𝑛→∞ 𝑐𝑛  =0 such that 
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𝑑 𝑇 𝑃𝑇 𝑛−1𝑥, 𝑇 𝑃𝑇 𝑛−1𝑦 ≤ 𝑘𝑛𝑑 𝑥, 𝑦 +𝑐𝑛  ,for all 𝑥, 𝑦 ∈ 𝐶 and  ∈ 𝑁. 

(4) Generalized asymptotically quasi nonexpansive (see [19]) if there exist non negative real sequences             {𝑘𝑛  

} and {𝑐𝑛} with 𝑘𝑛≥1, lim𝑛→∞ 𝑘𝑛  =1and lim𝑛→∞ 𝑐𝑛  =0 such that 

𝑑 𝑇 𝑃𝑇 𝑛−1𝑥, 𝑝 ≤ 𝑘𝑛𝑑 𝑥, 𝑝 +𝑐𝑛  ,for all 𝑥 ∈ 𝐶 , 𝑛 ∈ 𝑁 and ∈ 𝐹 𝑇  . 
 

From the definitions above, we know that each nonexpansive mapping is an asymptotically nonexpansive nonself-

mapping, and each asymptotically non-expansive nonself-mapping is uniformly L =𝑠𝑢𝑝𝑛≥1 𝑘𝑛  - Lipschitzian. 

 

To prove the results we make use of following basic concepts.Let 𝑥𝑛  be a bounded sequence in hyperbolic space 𝑋. 

For ∈  𝑋 , define a continuous functional r(., 𝑥𝑛  ) : 𝑋 →[0,+ ∞) by    

 

r(𝑥, 𝑥𝑛  ) =𝑙𝑖𝑚𝑠𝑢𝑝𝑛→∞ 𝑑 𝑥, 𝑥𝑛   . 
 

The asymptotic radius r( 𝑥𝑛  ) of  𝑥𝑛  ) is given by 
 

r( 𝑥𝑛  ) =inf{ r(𝑥, 𝑥𝑛  ) : 𝑥 ∈  𝑋 , }. 

The asymptotic radius 𝑟𝐶( 𝑥𝑛  ) of  𝑥𝑛   with respect to 𝐶 ⊂ 𝑋 is given by 

𝑟𝐶( 𝑥𝑛  ) = inf{ r(𝑥, 𝑥𝑛  ) : 𝑥 ∈  𝐶 , }. 

The asymptotic center A ( 𝑥𝑛   of  𝑥𝑛   is a set, 

A( 𝑥𝑛   ={ 𝑥 ∈  𝑋 ∶  r(𝑥, 𝑥𝑛  )  = r( 𝑥𝑛 )}. 

The asymptotic center 𝐴𝐶( 𝑥𝑛  ) of  𝑥𝑛   with respect to 𝐶 ⊂ 𝑋 is given by 
 

𝐴𝐶( 𝑥𝑛  ) ={ 𝑥 ∈  𝐶 ∶  r(𝑥, 𝑥𝑛  )  = 𝑟𝐶( 𝑥𝑛  ) }. 

A sequence  𝑥𝑛   in hyperbolic space X is said to ∆-convergence to  𝑥 ∈  𝑋 , If 

𝑥 is the unique asymptotic center of {𝑢𝑛}for every subsequence {𝑢𝑛} of   𝑥𝑛   
In this case, we call 𝑥 the ∆ limit of   𝑥𝑛   . 
The purpose of paper is to study an explicit improved Kuhfitting iterative scheme for common fixed points of two 

asymptotically nonexpansive nonself mappings in hyperbolic spaces. Und-  er  a limit condition, we obtained a ∆-
convergence theorem. This is a development to the resu-   lts of [12]. 

 

Preliminary and Lemmas:- 
 

Lemma 2.1  [6] Let (𝑋, 𝑑,𝑊) be a complete uniformly convex hyperbolic space with monot-  one modulus of 

uniform convexity 𝜂 and let 𝐶 be a nonempty,closed and convex subset of 𝑋.Then every bounded sequence 𝑥𝑛   in X 

has a unique asymptotic center with respect to 𝐶. 

 

Lemma 2.2  [6,8] Let (𝑋, 𝑑,𝑊) be a complete uniformly convex hyperbolic space with mon-   one modulus of 

uniform convexity 𝜂. Let 𝑥 ∈ 𝑋 and  𝛽𝑛   be a sequence in [a,b] for some a,b∈ (0,1) . Let  𝑥𝑛   , 𝑦𝑛  are sequences 

in 𝑋 such that lim
𝑛→∞

𝑠𝑢𝑝𝑑(𝑥𝑛 , 𝑥) ≤ 𝐶 and lim
𝑛→∞

𝑑(𝑊 𝑥𝑛 , 𝑦𝑛 , 𝛽𝑛  , 𝑥)= 𝑐 for some 𝑐 ≥ 0, then lim
𝑛→∞

𝑑(𝑥𝑛 , 𝑦𝑛 ) =0. 

 

Lemma 2.3   [24] Let 𝐶 be a nonempty closed convex subset of a uniformly convex hyperbolic space,and let  𝑥𝑛   
be a bounded sequence in 𝐶 such that 𝐴  𝑥𝑛   =  𝑝  and 𝑟  𝑥𝑛   = 𝜌. If  𝑦𝑚   is another sequence in 𝐶 such that 

lim
𝑚→∞

𝑠𝑢𝑝𝑟(𝑦𝑚 ,  𝑥𝑛  ) = 𝜌 ,then lim
𝑚→∞

𝑦𝑚= 𝑝 . 

 

Lemma 2.4 [20] Let  𝑎𝑛   and  𝑡𝑛   be two sequences of non negative real numbers satisfying the inequality 𝑎𝑛+1 ≤ 

𝑎𝑛 + 𝑡𝑛  for all n ≥ 1 . If  𝑡𝑛
∞
𝑛=1 < +∞, then lim

𝑛→∞
𝑎𝑛  exists. 

 

Main Results:- 
Theorem 3.1 Let 𝐶 be a nonempty closed convex subset of a  complete uniformly convex hyperbolic space 𝑋 with 

monotone modulus of uniform convexity 𝜂, and 𝑃: 𝑋 → 𝐶 be the nonexpansive retraction. Let 𝑆1, 𝑆2:∶ 𝐶 → 𝑋 be two 

generalized asymptotically nonexpansive nonself mappings with sequence  𝑘𝑛  ,  𝑙𝑛   ⊂ [1,∞) such that   (𝑘𝑛 −∞
𝑛=1

1) < ∞ ,   (𝑙𝑛 − 1)∞
𝑛=1 < ∞  and 𝐹 =  𝐹(𝑆1)∩ 𝐹(𝑆2)≠ ∅.Suppose that  𝛼𝑛  ,  𝛽𝑛   are real sequences in [a,b] for 

some a,b ∈ (0,1) . Let  𝑥𝑛   be a sequence generated by the following manner: 
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  𝑥1 ∈ 𝐶  , 

                                  𝑦𝑛=𝑃𝑊 𝑥𝑛 , 𝑆2 𝑃𝑆2 
𝑛−1𝑥𝑛 , 𝛽𝑛                                    (3.1)                                                     

𝑥𝑛+1= 𝑃𝑊 𝑦𝑛 , 𝑆1 𝑃𝑆1 
𝑛−1𝑦𝑛 , 𝛼𝑛  . 

 Then the sequence  𝑥𝑛    ∆ -converges to a point q ∈ F. 

Proof  We prove the theorem in three steps. 

Step 1 .We  prove that ∀𝑝 ∈ 𝐹 , lim
𝑛→∞

𝑑(𝑥𝑛 , 𝑝) and lim
𝑛→∞

𝑑(𝑥𝑛 , 𝐹) exist.Setting  𝑘𝑛=1+𝑢𝑛  , 𝑙𝑛=1+𝑣𝑛 , so  𝑢𝑛
∞
𝑛=1 < ∞ 

,  𝑣𝑛
∞
𝑛=1 < ∞. Using (1.1)and (3.1), we have that 

              𝑑 𝑦𝑛 , 𝑝  =  𝑑( 𝑃𝑊 𝑥𝑛 , 𝑆2 𝑃𝑆2 
𝑛−1𝑥𝑛 , 𝛽𝑛  , 𝑝) 

                            ≤  𝑑 ( 𝑊 𝑥 𝑛 , 𝑆 2 𝑃 𝑆 2 
𝑛 −1𝑥 𝑛 , 𝛽 𝑛  , 𝑝 ) 

                            ≤  1 − 𝛽 𝑛  𝑑  𝑥 𝑛 , 𝑝   +𝛽 𝑛  𝑑  𝑆 2 𝑃 𝑆 2 
𝑛 −1𝑥 𝑛 , 𝑝                 (3.2) 

                            ≤  1 − 𝛽 𝑛  𝑑  𝑥 𝑛 , 𝑝   +𝛽 𝑛 𝑙 𝑛 𝑑  𝑥 𝑛 , 𝑝   +𝛽 𝑛 𝑐 𝑛  

                            ≤ 𝑙 𝑛 𝑑  𝑥 𝑛 , 𝑝   +𝛽 𝑛 𝑐 𝑛  

and so 

           𝑑  𝑥 𝑛 +1, 𝑝    = 𝑑  (𝑃𝑊  𝑦 𝑛 , 𝑆 1 𝑃 𝑆 1 
𝑛 −1𝑦 𝑛 , 𝛼 𝑛  , 𝑝 ) 

                              ≤  𝑑 ( 𝑊 𝑦 𝑛 , 𝑆 1 𝑃 𝑆 1 
𝑛−1𝑦 𝑛 , 𝛼 𝑛  , 𝑝 ) 

                              ≤  1 − 𝛼 𝑛  𝑑  𝑦 𝑛 , 𝑝   +𝛼 𝑛  𝑑  𝑆 1 𝑃 𝑆 1 
𝑛 −1𝑦 𝑛 , 𝑝   

                              ≤  1 − 𝛼 𝑛  𝑑  𝑦 𝑛 , 𝑝   +𝛼 𝑛 𝑘 𝑛 𝑑  𝑦 𝑛 , 𝑝   +𝛼 𝑛 𝑑 𝑛  

                              ≤ 𝑘 𝑛 𝑑  𝑦 𝑛 , 𝑝   +𝛼 𝑛 𝑑 𝑛                                                     (3.3) 

                              ≤ 𝑘 𝑛 𝑙 𝑛 𝑑  𝑥 𝑛 , 𝑝   +𝑘 𝑛𝛽 𝑛 𝑐 𝑛 +𝛼 𝑛 𝑑 𝑛  

                              =(1+𝑣 𝑛 )( 1+𝑢 𝑛 ) 𝑑  𝑥 𝑛 , 𝑝   +(𝑘 𝑛 𝛽 𝑛 𝑐 𝑛 + 𝛼 𝑛 𝑑 𝑛 )  
Since  (𝑢

𝑛
∞
𝑛 =1 +𝑣 𝑛 +𝑢 𝑛 𝑣 𝑛 ) < ∞,we have {𝑑  𝑥 𝑛 +1, 𝑝  } is bounded,and then  𝑥 𝑛   is also bounded. It implies that 

there exists a constant 𝑀 > 0 such that 𝑑  𝑥 𝑛 +1, 𝑝  ≤  𝑀 for all n≥ 1. So 

          𝑑  𝑥 𝑛 +1, 𝑝   ≤  𝑑  𝑥 𝑛 , 𝑝  + (𝑢 𝑛 +𝑣 𝑛 +𝑢 𝑛 𝑣 𝑛 ) 𝑀. 

Consequently, it follows from Lemma 2.4 that lim
𝑛 →∞

𝑑 (𝑥 𝑛 , 𝑝 ) and lim
𝑛 →∞

𝑑 (𝑥 𝑛 , 𝐹 ) exist. 

Step-2  We prove that lim
𝑛 →∞

𝑑 (𝑥 𝑛 , 𝑆 1𝑥 𝑛 ) = lim
𝑛 →∞

𝑑 (𝑥 𝑛 , 𝑆 2𝑥 𝑛 ) =0. 

Assume that lim
𝑛 →∞

𝑑 (𝑥 𝑛 , 𝑝 ) =c≥ 0. Using (3.2),we have 𝑑  𝑦 𝑛 , 𝑝   ≤ 𝑙 𝑛  𝑑  𝑥 𝑛 , 𝑝  + 𝑙 𝑛 𝑐 𝑛 .Taking the limsup on 

both sides in this inequality, we have  

                                     lim
𝑛 →∞

sup 𝑑  𝑦 𝑛 , 𝑝  ≤c.                                      (3.4) 

 

In addition, 𝑑  𝑆 1 𝑃 𝑆 1 
𝑛 −1𝑦 𝑛 , 𝑝  ≤ 𝑘 𝑛 𝑑  𝑦 𝑛 , 𝑝  +𝑑 𝑛 . Taking the limsup on both sides in this inequality, we 

have  

                             lim
𝑛 →∞

sup 𝑑  𝑆 1 𝑃 𝑆 1 
𝑛 −1𝑦 𝑛 , 𝑝  ≤c                           (3.5) 

From (3.3) we have 

                           𝑑  𝑥 𝑛 +1, 𝑝   ≤ 𝑑 ( 𝑊 𝑦 𝑛 , 𝑆 1 𝑃 𝑆 1 
𝑛 −1𝑦 𝑛 , 𝛼 𝑛  ,𝑝 ) 

                                              ≤ 𝑘 𝑛 𝑙 𝑛 𝑑  𝑥 𝑛 , 𝑝   +𝑘 𝑛 𝛽 𝑛 𝑐 𝑛 +𝛼 𝑛 𝑑 𝑛  

Since 𝑘 𝑛 , 𝑙 𝑛 →1, 𝑐 𝑛 , 𝑑 𝑛 → 0 ,n→ ∞ and lim
𝑛 →∞

 𝑑  𝑥 𝑛 , 𝑝  = 𝑐 ,we have 

                             lim
𝑛 →∞

 𝑑 ( 𝑊 𝑦 𝑛 , 𝑆 1 𝑃𝑆 1 
𝑛 −1𝑦 𝑛 , 𝛼 𝑛  , 𝑝 ) = 𝑐 .              (3.6) 

It follows from (3.4)-(3.6) and Lemma 2.2 that 

                             lim
𝑛 →∞

𝑠𝑢𝑝  𝑑  𝑦 𝑛 , 𝑆 1 𝑃 𝑆 1 
𝑛 −1𝑦 𝑛  = 0                         (3.7) 

In addition , 𝑑  𝑆 2 𝑃 𝑆 2 
𝑛 −1𝑥 𝑛 , 𝑝   ≤ 𝑙 𝑛 𝑑  𝑥 𝑛 , 𝑝   +𝑐 𝑛  and taking the limsup on both sides in this inequality, we 

have  

                           lim
𝑛 →∞

sup 𝑑  𝑆 2 𝑃𝑆 2 
𝑛 −1𝑥 𝑛 , 𝑝  ≤c                                (3.8) 

From (3.3) we have 

                      𝑑  𝑥 𝑛 +1, 𝑝  ≤  1 − 𝛼 𝑛  𝑑  𝑦 𝑛 , 𝑝   +𝛼 𝑛  𝑑  𝑆 1 𝑃 𝑆 1 
𝑛 −1𝑦 𝑛 , 𝑝   

                                         ≤  1 − 𝛼 𝑛  𝑑  𝑦 𝑛 , 𝑝  + 𝛼 𝑛  𝑑  𝑆 1 𝑃𝑆 1 
𝑛 −1𝑦 𝑛 , 𝑦 𝑛  +𝛼 𝑛  𝑑  𝑦 𝑛 , 𝑝           

                                                                                                                  (3.9) 

                                        ≤  𝑑  𝑦 𝑛 , 𝑝  + 𝑑  𝑆 1 𝑃 𝑆 1 
𝑛 −1𝑦 𝑛 , 𝑦 𝑛  . 

taking the liminf on both sides in this inequality (3.9),by lim
𝑛 →∞

 𝑑  𝑥 𝑛 , 𝑝   =c and (3.7), 

we have  

                                   lim
𝑛 →∞

𝑖𝑛𝑓  𝑑  𝑦 𝑛 , 𝑝  ≥ 𝑐                                             (3.10) 
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It follows from (3.4) and (3.10) that 

                                  lim
𝑛 →∞

 𝑑  𝑦 𝑛 , 𝑝   = 𝑐 . Using (3.2),this implies that 

       𝑑  𝑦 𝑛 , 𝑝  ≤  𝑑 ( 𝑊 𝑥 𝑛 , 𝑆 2 𝑃𝑆 2 
𝑛 −1𝑥 𝑛 , 𝛽 𝑛  , 𝑝 )  ≤ 𝑙 𝑛 𝑑  𝑥 𝑛 , 𝑝  +𝑐 𝑛     (3.11) 

and so 

                     lim
𝑛 →∞

 𝑑 ( 𝑊 𝑥 𝑛 , 𝑆 2 𝑃 𝑆 2 
𝑛 −1𝑥 𝑛 , 𝛽 𝑛  ,𝑝 )=0 

From lemma  2.2 ,we obtain 

                      lim
𝑛 →∞

𝑑  𝑥 𝑛 , 𝑆 2 𝑃 𝑆 2 
𝑛 −1𝑥 𝑛  = 0                                      (3.12) 

From 𝑦 𝑛 =𝑃𝑊 𝑥 𝑛 , 𝑆 2 𝑃 𝑆 2 
𝑛 −1𝑥 𝑛 , 𝛽 𝑛   and (3.12) we have  

                 𝑑  𝑥 𝑛 , 𝑦 𝑛   = 𝑑 (𝑥 𝑛  , 𝑃𝑊 𝑥 𝑛 , 𝑆 2 𝑃𝑆 2 
𝑛 −1𝑥 𝑛 , 𝛽 𝑛  ) 

                                ≤  𝑑 (𝑥 𝑛  ,𝑊 𝑥 𝑛 , 𝑆 2 𝑃 𝑆 2 
𝑛 −1𝑥 𝑛 , 𝛽 𝑛  ) 

                               ≤  1 − 𝛽 𝑛  𝑑  𝑥 𝑛 , 𝑥 𝑛   +𝛽 𝑛  𝑑  𝑥 𝑛 , 𝑆 2 𝑃 𝑆 2 
𝑛 −1𝑥 𝑛       (3.13) 

                               ≤  𝑑  𝑥 𝑛 , 𝑆 2 𝑃𝑆 2 
𝑛 −1𝑥 𝑛  → 0, (n→ ∞). 

 

In addition, 

                 𝑑  𝑥 𝑛 , 𝑆 1 𝑃 𝑆 1 
𝑛 −1𝑥 𝑛  ≤  𝑑  𝑥 𝑛 , 𝑦 𝑛  + 𝑑  𝑦 𝑛 , 𝑆 1 𝑃 𝑆 1 

𝑛 −1𝑦 𝑛   
                                                    + 𝑑  𝑆 1 𝑃𝑆 1 

𝑛 −1𝑦 𝑛 , 𝑆 1 𝑃𝑆 1 
𝑛 −1𝑥 𝑛    

                                                    ≤  𝑑  𝑥 𝑛 , 𝑦 𝑛   + 𝑑  𝑦 𝑛 , 𝑆 1 𝑃𝑆 1 
𝑛 −1𝑦 𝑛  +𝑘 𝑛 𝑑  𝑦 𝑛 , 𝑥 𝑛     

                                                                                                                     (3.14)      

Thus, it follows from (3.7) and (3.13) that    

                          lim
𝑛 →∞

𝑑  𝑥 𝑛 , 𝑆 1 𝑃 𝑆 1 
𝑛 −1𝑥 𝑛  = 0                                           (3.15) 

Using (3.1), we obtain that 

𝑑  𝑥 𝑛 , 𝑥 𝑛 +1  = 𝑑 (𝑥 𝑛 , 𝑃𝑊  𝑦 𝑛 , 𝑆 1 𝑃 𝑆 1 
𝑛 −1𝑦 𝑛 , 𝛼 𝑛   

               ≤  𝑑 (𝑥 𝑛 ,𝑊 𝑦 𝑛 , 𝑆 1 𝑃 𝑆 1 
𝑛 −1𝑦 𝑛 , 𝛼 𝑛   

                                             ≤  1 − 𝛼 𝑛  𝑑  𝑥 𝑛 , 𝑦 𝑛  +𝛼 𝑛  𝑑  𝑥 𝑛 ,  𝑆 1 𝑃 𝑆 1 
𝑛 −1𝑦 𝑛 , 𝛼 𝑛                                                                                                                                                                                                                                                                                                              

≤  1 − 𝛼 𝑛  𝑑  𝑥 𝑛 , 𝑦 𝑛  + 𝛼 𝑛  𝑑  𝑥 𝑛 , 𝑦 𝑛  +𝛼 𝑛  𝑑  𝑦 𝑛 , 𝑆 1 𝑃 𝑆 1 
𝑛 −1𝑦 𝑛   

                            ≤ 𝑑  𝑥 𝑛 , 𝑦 𝑛   +𝛼 𝑛  𝑑  𝑦 𝑛 , 𝑆 1 𝑃 𝑆 1 
𝑛−1𝑦 𝑛        (3.16) 

Thus, it follows from (3.7) and (3.13) that 

                                        lim
𝑛 →∞

 𝑑  𝑥 𝑛 , 𝑥 𝑛 +1 =0.                    (3.17) 

Let 𝐿 =sup{𝑘 𝑛 ∶ 𝑛 ≥ 1},𝑆 1 is uniformly 𝐿 -lipschitizian.Denote as  𝑃 𝑆 1 
1−1 the identity maps from 𝐶  onto itself. 

Thus by the inequality (3.15) and (3.17),we have 

 

𝑑  𝑥 𝑛 , 𝑆 1𝑥 𝑛   ≤  𝑑  𝑥 𝑛 , 𝑥 𝑛 +1 +  𝑑  𝑥 𝑛 +1, 𝑆 1 𝑃𝑆 1 
𝑛 𝑥 𝑛 +1  

                     + 𝑑  𝑆 1 𝑃 𝑆 1 
𝑛 𝑥 𝑛 +1, 𝑆 1 𝑃 𝑆 1 

𝑛 𝑥 𝑛  + 𝑑  𝑆 1 𝑃 𝑆 1 
𝑛 𝑥 𝑛 , 𝑆 1𝑥 𝑛   

                      ≤  (1+ 𝐿 ) 𝑑  𝑥 𝑛 , 𝑥 𝑛 +1 + 𝑑  𝑥 𝑛 +1 , 𝑆 1 𝑃 𝑆 1 
𝑛 𝑥 𝑛 +1  

                      + 𝑑  𝑆 1 𝑃 𝑆 1 
1−1 𝑃 𝑆 1 

𝑛 𝑥 𝑛 , 𝑆 1 𝑃 𝑆 1 
1−1𝑥 𝑛   

                     ≤ (1+ 𝐿 ) 𝑑  𝑥 𝑛 , 𝑥 𝑛 +1 + 𝑑  𝑥 𝑛 +1, 𝑆 1 𝑃 𝑆 1 
𝑛 𝑥 𝑛 +1 + 𝐿  𝑑   𝑃 𝑆 1 

𝑛 𝑥 𝑛 , 𝑆 1𝑥 𝑛   
                      ≤ (1+ 𝐿 ) 𝑑  𝑥 𝑛 , 𝑥 𝑛 +1 + 𝑑  𝑥 𝑛 +1, 𝑆 1 𝑃 𝑆 1 

𝑛 𝑥 𝑛 +1  
                       + 𝐿  𝑑  𝑆 1 𝑃 𝑆 1 

𝑛 −1𝑥 𝑛 , 𝑥 𝑛  → 0 𝑛 → ∞ . 
Similarily, we may show that  lim

𝑛 →∞
 𝑑  𝑥 𝑛 , 𝑆 2𝑥 𝑛  =0                                     (3.18) 

Step-3.We prove that  𝑥 𝑛   ∆-converges to a point 𝑞 ∈F. Since  𝑥 𝑛   is bounded, by Lemma 2.1, it has a unique 

asymptotic center 𝐴 𝐶 ( 𝑥 𝑛  ) = 𝑞  .If  𝑤𝑛   is any sequence of  𝑥 𝑛   with 𝐴 𝐶 ( 𝑤𝑛  )=  𝑤 ), then by (3.18) we have  

                     lim
𝑛 →∞

 𝑑  𝑤𝑛 , 𝑆 2𝑤𝑛  =0                                  (3.19) 

We claim that 𝑤 ∈ 𝐹 .In fact, for all m,n≥ 1, 

 

𝑑  𝑆 1 𝑃 𝑆 1 
𝑚−1𝑤,𝑤𝑛   ≤  𝑑  𝑆 1 𝑃 𝑆 1 

𝑚−1𝑤,𝑆 1 𝑃𝑆 1 
𝑚−1𝑤𝑛   

                                     + 𝑑  𝑆 1 𝑃𝑆 1 
𝑚−1𝑤𝑛 , 𝑆 1 𝑃 𝑆 1 

𝑚−2𝑤𝑛  +……+ 𝑑  𝑆 1𝑤𝑛 , 𝑤𝑛   
                                     ≤ 𝑘 𝑚 𝑑  𝑤,𝑤𝑛  +𝑑 𝑚 +  𝐿𝑑  𝑆 1𝑤𝑛 ,𝑤𝑛  +…… + 𝑑  𝑆 1𝑤𝑛 , 𝑤𝑛   
                                      → 0 𝑛 → ∞ . 
Taking lim sup on both sides of the above estimate and using and using (3.19),we obtain that 
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𝑟  𝑆 1 𝑃 𝑆 1 
𝑚−1𝑤, {𝑤

𝑛
} = lim

𝑛 →∞
𝑠𝑢𝑝  𝑑  𝑆 1 𝑃𝑆 1 

𝑚−1𝑤,𝑤𝑛   

                                      ≤ lim
𝑛 →∞

𝑠𝑢𝑝  𝑑  𝑤,𝑤𝑛  = 𝑟  𝑤, {𝑤
𝑛

} . 

This implies that 

lim
𝑚→∞

 𝑟  𝑆 1 𝑃 𝑆 1 
𝑚−1𝑤, {𝑤

𝑛
} = 𝑑  𝑤,𝑤𝑛  . 

 

By Lemma 2.3, we have 

 lim
𝑚→∞

 𝑆 1 𝑃 𝑆 1 
𝑚−1𝑤 = 𝑤 . 

Because 𝑆 1  is uniformly continuous , we have 

𝑆 1𝑤 = 𝑆 1 lim
𝑚→∞

 𝑆 1 𝑃 𝑆 1 
𝑚−1𝑤 = 𝑆 1 lim

𝑚→∞
𝑃𝑆 1 𝑃 𝑆 1 

𝑚−1𝑤 = lim
𝑚→∞

 𝑆 1 𝑃 𝑆 1 
𝑚𝑤 = 𝑤. 

Consequently, 𝑤 ∈ 𝐹  𝑆 1  , Using the same method, we have prove that 𝑤 ∈  𝐹  𝑆 2  and 𝑤 ∈  𝐹 . 

By the uniqueness of asymptotic center,we have 𝑤 = 𝑞 . It implies that 𝑞   is the unique asymptotic center of  𝑤𝑛   
for each subsequence  𝑤𝑛   of  𝑥 𝑛  , that is  𝑥 𝑛   ∆-converges to a point 𝑞 ∈F. 

  

Remark 3.1 

(a) Theorem 3.1 removes the assumption about 0 < 𝑏  1 − 𝑎  <
1

2
 in [4] 

(b)Theorem 3.1 generalizes the results of [4] from a two asymptotically nonexpansive nonself mappings to 

generalized asymptotic mappings. 
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