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Bananas, whose demand is very high in the global market, are 

considered one of the best agricultural export products in the 

Philippines — a country where agriculture plays a significant role in 

economic development. However, diseases in bananas have caused 

significant losses to farmers over the years due to low yields, as it 

significantly affects the growth and quality of the fruits. To solve the 

problem, studies have shown that early detection of diseases in bananas 

is essential for the local farmers to determine a cost-effective control 

measure to perform which helps reduce the infestation, if not eradicate 

it. Since image processing has proven to be an effective tool for 

classification and analysis, it was used as the focus of the study. A total 

of 3000 images of common banana diseases, divided into training, 

validation, and testing datasets, and whose symptoms are mostly found 

on the leaves, were collected, preprocessed, and loaded into the four (4) 

pre-trained convolutional neural network model architectures namely, 

VGG19, InceptionV3, ResNet50 and EfficientNet which adopted the 

same optimization and model parameters. To determine the model with 

the best performance when used in a test dataset, accuracy results and 

the confusion matrix and classification report were utilized as 

performance evaluation metrics. The results have shown that among the 

identified model architectures, the EfficientNet model obtained the 

highest accuracy of 91%. 
 

Copyright, IJAR, 2024,. All rights reserved. 

…………………………………………………………………………………………………….... 

Introduction: 
Agriculture plays a significant role in the development of the economy in the Philippines, contributing an average of 

19 percent to the country's Gross Domestic Product (GDP) (De Asis, 2003). According to the Philippine Statistics 

Authority (2020), crop cultivation was the leading agricultural enterprise in the country in 2020, with a total output 

of 54.9 percent, surpassing other agricultural operations such as livestock, poultry production, and fisheries, which 

made up 17.9 percent, 14.3 percent, and 12.8 percent, respectively. Approximately 9 million hectares of the 

country's 30 million hectares of land were dedicated to agriculture (Tolentino et al., 2015). In 2005, the agriculture 

sector contributed 19 percent to the country's GDP, making the Philippines one of the leading exporters of various 

agricultural products in high demand in the global market, including rice, maize, sugarcane, coconut, rubber, 

pineapple, coffee, and notably, bananas (Altoveros et al., 2007). 
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Fresh bananas are one of the best agricultural products and major export commodities for the Philippines, 

contributing about 200 million US dollars annually (PCAARRD, 2013). According to Voora et al. (2020), bananas 

were one of the most traded fruits in the world in 2017, with 22.7 million tons, representing 20 percent of global 

production. Bananas have consistently been a top dollar earner for the country, becoming the second most important 

export commodity. The Philippine banana export industry is highly competitive, contributing 29.3 percent to 

agricultural export earnings in 2019, according to Mapa et al. (2020), thereby establishing the country as a dominant 

banana exporter in the Asian market (Huang, 2024). 

 

However, diseases in bananas pose a significant threat to banana production, leading to substantial problems in the 

Philippines and East and Central Africa (ECA) (Vanlauwe et al., 2013). Based on the findings of Viljoen et al. 

(2017), the presence of diseases and their harmful effects, such as loss of yields, can destabilize food security, 

production, and household income by up to 25 percent. In the Philippines, over 2,000 hectares in Mindanao were 

lost to Panama disease and the effects of El Niño in 2015, causing a drop in production volumes (Azman et al., 

2020). The situation led the Pilipino Banana Growers and Exporters Association (PBGEA) to seek government 

support to help recover the banana industry, especially since more than 5,000 hectares were abandoned in the Davao 

region due to the severe loss caused by Panama disease. 

 

As noted by Puig (2014), the management of banana diseases in the region can be attributed to strategies such as 

early detection and containment, disease management techniques, and the development of long-term strategies 

through research. Common problems for banana farmers include the late identification of diseases and lack of 

knowledge in dealing with unsuitable conditions. The introduction of information technology in agriculture has 

paved the way for more effective solutions to agricultural problems, including using image processing and expert 

systems to support decision-making and improve crop yields. 

 

Related Works: 

Many studies have utilized machine learning algorithms and image classification in agriculture. Kumar et al. (2020) 

developed an expert system integrating image processing to determine pest and disease attacks in rapeseed-mustard. 

Chen Lai et al. (2010) applied a similar approach in corn. Other studies, such as those by Lehri et al. (2008), and 

Kaur (2014), incorporated textual data alongside images. El-Helly et al. (2003) and Sharma et al (2022) developed 

systems for detecting leaf diseases like Downy mildew, Leafminer, and Powdery mildew. Ganesan (2007) created 

Crop-9-DSS, a decision support system for crop management in Kerala, India, focusing on various crops, including 

bananas. Prathibha G. et al. (2014) used image processing for early detection of borers in tomatoes. Tigadi et al 

(2016) proposed an automatic plant disease detector for bananas using HOT feature extraction and Artificial Neural 

Network-based training and classification. Anasta et al. (2021) used multilevel thresholding methods for banana 

disease detection, while Raut et al. (2017) employed digital image processing with K-means clustering and a multi-

SVM algorithm. Kumar et al. (2010) used the KNN classifier and texture features for flower image classification. 

Panchal et al. (2016) utilized image processing for pomegranate leaf disease detection using K-means clustering and 

SVM for classification. Sladojevic, et al. (2016) applied a deep neural network for leaf disease classification with 

high accuracy. Abu et al. (2019) used deep learning and Tensorflow for flower classification, achieving high 

accuracy rates. Kumar, P. et al. (2020) demonstrated advanced CNN with Tensorflow for image classification, with 

over 95 percent accuracy. Kumbhar et al. (2019) developed "Farmer Buddy," a web-based cotton leaf disease 

detection system using CNN. Karol (2019) implemented CNN for plant disease detection and remedy 

recommendation, with applications in drone-based crop surveillance. Mohanty et al. (2016) used CNN for leaf 

disease identification, emphasizing texture and color features for high accuracy. Akter et al. (2021) introduced 

attention architecture for classifying Bangladeshi medicinal plants using deep learning techniques. 

 

The primary objective of this study was to identify the most effective model for classifying banana diseases, a tool 

that can assist in the early detection of diseases and inform appropriate prevention and control strategies based on 

integrated disease management standards. By leveraging TensorFlow and CNN-based models, including 

EfficientNetV2, VGG-19, InceptionV3, and ResNet50, we trained and tested these models on an extensive image 

dataset containing images of various banana diseases, such as Moko disease, Panama disease, Bunchy Top, and 

Black Leaf Streak (BLS). The model that achieved the highest accuracy from each experiment was selected as the 

foundation for a disease classification system designed to provide critical insights and decision support to banana 

growers. This system aims to enhance productivity by enabling timely disease diagnosis, thereby facilitating more 

effective disease management practices. This research aligns with the objectives of the Philippine Council for 

Agriculture, Aquatic, and Natural Resources Research and Development (PCAARRD), which seeks to improve 
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agricultural practices and productivity through the adoption of innovative technologies in banana farming 

(Philippine Council for Agriculture, Aquatic and Natural Resources Research and Development, 2013). 

 

Methodology:- 
The Iterative and Incremental Model 

Figure 1:- The Iterative and Incremental Model. 

 
 

The Iterative and Incremental Development Model (IIDM), as shown in Figure 1, was employed in this study, 

offering a cyclical process that allows flexibility across its phases. Unlike the linear Waterfall model, IIDM 

progresses through iterations, each with clearly defined objectives that must be achieved before moving to the next 

phase. This iterative process ensures that with each cycle, the project incrementally progresses toward the desired 

outcome (Azman et al., 2020). The methodology adopted for this research follows this iterative and incremental 

approach, with phases completed sequentially throughout the project's development. In addition, a machine learning 

pipeline was integrated into the methodology to structure activities related to image processing and the development 

of the machine learning model, ensuring a systematic and comprehensive approach from the project's inception to its 

completion. 

 

The Machine Learning Pipeline  

The proposed method in this study aimed to determine the most effective convolutional neural network (CNN) 

model for classifying banana diseases. The research utilized four well-known pre-trained CNN models for image 

classification to distinguish between common banana diseases: Bunchy Top disease, Fusarium Wilt disease, Moko 

Bacterial Wilt, and Sigatoka. These models were trained on the same banana image datasets using consistent image 

and batch sizes, epoch numbers, augmentation processes, activation functions, and optimization parameters. The 

overall results and performance metrics of each model were compared and discussed. The model that demonstrated 

the highest performance and accuracy was ultimately selected. The entire process of the proposed methodology is 

best described by a machine learning pipeline. This pipeline consists of a series of complex data processing steps 

arranged sequentially, starting from data acquisition, preprocessing, feature extraction, model training, and 

culminating in deploying the model to generate predictions on test data (Atoum, 2018). It provides a detailed 

procedure on how the workflow was codified and automated to produce the machine learning model (Makihara et 

al., 2003). 
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Figure 2:- The Machine Learning Pipeline. 

 

The machine learning pipeline began with the collection of images of the various banana plant diseases specified in 

the study's scope. Figure 2 illustrated the process flow of the system's disease detection, which underwent several 

phases of image processing and dataset training for classification. 

 

Image Acquisition 

The images of banana diseases used in this system were acquired using two methods. The first method involved 

capturing images with a digital camera and a mobile phone during visits to banana farms in Davao City, Cateel, and 

the City of Mati, Davao Oriental. The second method of data collection involved downloading images from various 

reliable sources. As the study focused on disease classification based on symptoms manifested on the leaf, images 

were captured specifically targeting the disease-affected portions of the leaf's front view. This approach aligns with 

the findings of Haque et al. (2022), indicating that disease symptoms must be visibly apparent on the leaves, as 

shown in Figure 3. During the image acquisition process, the researcher collaborated with banana experts to 

accurately identify and validate the diseases present in the banana images. These methods ensured a comprehensive 

and reliable dataset for training the CNN models, facilitating accurate disease classification and contributing to the 

robustness of the research findings. 
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Figure 3:- Sample Image Dataset. 

 

In this study, to replicate real-world conditions and address the challenges of using an image-based detection 

system, the researcher adopted an approach without a standardized method for capturing images. This approach 

aligns with the study by Alessandrini et al. (2021), which emphasized using accurate and representative sample 

images of banana leaves acquired under real-time conditions without controlling lighting, backgrounds, or angles. 

Images were taken from various perspectives, with most captured from short distances and some from higher 

vantage points. Additionally, the camera's zoom capability was utilized to focus on disease-infected banana leaves 

taken from greater distances. This practice was necessary because, as advised by banana experts, entering areas of 

banana farms contaminated with Fusarium Wilt (Panama disease) is prohibited to prevent the disease's spread. The 

images were captured using natural backgrounds, with lighting conditions reflecting the actual environment at the 

time of data collection. This method ensured that the dataset realistically represented the variability and 

unpredictability encountered in real-world scenarios, thereby enhancing the robustness and applicability of the 

image-based detection system developed in this study. 

 

Dataset Preparation 

Image datasets consisting of banana leaf images were created and analyzed for the web application. The dataset, 

stored in a repository, comprises 3,000 images representing the four (4) common banana diseases (Philippine 

Council for Agriculture, Aquatic and Natural Resources Research and Development, 2013).Additionally, a class 

containing images of healthy leaves was included to distinguish diseased leaves from healthy ones. Each class 

comprised 600 images, forming the comprehensive image dataset used in this study. All images were accurately 

classified, properly labeled, and stored in JPG format in the RGB color space model. The dataset was divided into 
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three parts: 80% of the images were used for training, 10% for validation, and 10% for testing. This division ensured 

a robust evaluation of the model's performance. The distribution of images per class is detailed in Table 1. This 

structured approach to dataset creation and division facilitated the development of a reliable image-based detection 

system, providing a strong foundation for accurate disease classification in banana leaves. 

 

Table 1:- Total Number of Banana Images and Splitting of the Image Dataset. 

Classes 
No. of Training 

Images 

No. of Testing 

Images 

No. of Validation 

Images 

Total No. of Images 

per Class 

Bunchy Top 

Disease 
480 60 60 600 

Fusarium Wilt 

Disease 
480 60 60 600 

Sigatoka Disease 480 60 60 600 

Moko Disease 480 60 60 600 

Healthy Leaves 480 60 60 600 

Total 2400 300 300 3000 

 

Image Pre-processing 

The images used in this study underwent pre-processing to enhance their quality for analysis. This process included 

resizing the images to a standard 224 x 224 dimension, as the original images varied in size (Chithra & Bhavani, 

2019).  

 
Figure 4:- Result of augmentation on a sample image. 
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To improve model performance and outcomes, image augmentation techniques were applied to the training data. The 

`preprocessing_function` was used to instruct the data generator to apply `preprocess_input` to each training image 

before it was sent to the model, ensuring that the images met the specific requirements of each model. Various image 

augmentation techniques were employed to generate new and diverse examples of image inputs. These techniques 

included randomly flipping images vertically and horizontally (horizontal_flip and vertical_flip), randomly shifting 

image inputs within a range of 0.2 (height_shift_range and width_shift_range), randomly rotating images up to 45 

degrees (rotation_range), and randomly zooming in on image inputs within a range of 0.3 (zoom_range). 

Additionally, brightness adjustments were made to train the model on images taken under different lighting 

conditions, using a brightness range from 0.2 (dark) to 1.2 (bright). These augmentation techniques created a more 

robust training dataset by simulating various real-world conditions and scenarios. A sample image of Sigatoka 

disease, shown in Figure 4, illustrates the results of these augmentation techniques. This comprehensive pre-

processing and augmentation approach ensured that the model was trained on a diverse set of images, enhancing its 

ability to accurately classify banana leaf diseases under varying conditions. 

 

Feature Extraction and Classification 

In this study, pre-trained convolutional neural networks (CNNs) were utilized to extract robust and informative 

features from training images for disease classification. The CNN models employed were EfficientNetV2, VGG-19, 

InceptionV3, and ResNet50. These pre-trained models were evaluated and compared to determine which network 

achieved the highest accuracy rate in classification relative to their prediction time.  

 

Model Training 

The study evaluated the identified convolutional neural network architectures—each chosen for its established 

capabilities in feature extraction and classification accuracy. Optimization of the models employed the Adam 

optimization technique, renowned for its ability to deliver effective results rapidly in deep learning tasks. All input 

images were resized to a standardized 224 x 224-pixel format and preprocessed before being fed into the models, 

which were updated using a batch size of 32. For multi-class classification of banana leaf diseases and healthy leaves, 

categorical cross-entropy served as the appropriate loss function. Training protocols included a default of 50 epochs, 

complemented by a callback list featuring ModelCheckpoint for saving model weights, ReduceLROnPlateau for 

dynamically adjusting the learning rate based on validation performance, and EarlyStopping to halt training when no 

improvement was detected over ten epochs. These methodologies were meticulously documented and detailed in 

Table 2, ensuring transparency and reproducibility in the optimization and parameter setup for achieving robust 

classification results in the study. 

Table 2:- Optimizer and Model Parameter Setup Applied to all CNN Models. 

Optimizer and Model Parameters Setup 

Batch size 32 

Image size (height, width) 224, 224 

Optimizer Adam 

Learning rate 0.0001 

Loss function Categorical Cross-entropy 

Epoch size 50 

Steps per epochs 75 

Validation steps 10 

 

Model Evaluation 

Measuring the performance of a model is necessary and is considered an essential part of image classification. This 

will help understand and evaluate the parameters in the image dataset that affect the classification results (Ashaari et 

al., 2013). In this research, each pre-trained convolutional neural network model architecture was evaluated and 

compared according to five (5) performance evaluation metrics, including the confusion matrix, accuracy, precision, 

recall, and f1-score. The result was noted and used as the basis for determining the model that showed the best 

performance. The performance evaluation metrics were discussed as follows: 

 

Confusion Matrix 

This performance evaluation method is usually used in multiclass classifications and is done after classification. It 

consists of the four values; namely, T.P. (True Positive), which are values that have been appropriately classified, 

T.N. (True Negative) are values that were predicted to be negative and are correctly classified as negative, F.P. (False 
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Positive) refers to the values predicted to be positive but is negative, and F.N. (False Negative) are positive values that 

were negatively predicted. The accuracy, precision, recall, and f1-scores are the frequently used performance metrics 

based on the values represented in the confusion matrix as indicated by Sharma et al. (2022) with the equations 

presented. 

 

Accuracy. This performance evaluation metric provides the proportion of the total number of correctly predicted 

values (Demir, 2022). The formula used to calculate accuracy is shown in (1). 

Accuracy = (TP+TN)/(TP+TN+FP+FN)  (1) 

 

Precision.As stated by Demir (2022), this performance evaluation metric, also called the positive predictive value, 

refers to the proportion of the correctly predicted positive values out of the total predicted positive values and can be 

calculated using (2). 

Precision = TP/(TP+FP)   (2) 

 

Recall. This performance evaluation metric, whose formula is shown in (3), is also known as sensitivity or the T.P. 

rate; recall refers to the proportion of the actual positive values that were correctly identified as a positive value out of 

the total actual positive occurrences (Demir, 2022). 

Sensitivity = TP/(TP+FN)   (3) 

 

F1-Score. The F1 score, also known as the F score, as the ―harmonic mean of precision and sensitivity it gives 

importance to both factors‖ (Demir, 2022). The f1 score can be derived using the formula in (4). 

F1 Score = 2 x (Precision x Sensitivity) / (Precision + Sensitivity)  (4) 

 

Analysis and Results:- 
Training and Validation Accuracy and Loss 

To assess and compare the performance of pre-trained convolutional neural network (CNN) models in classifying 

banana leaf diseases, their training and validation accuracies and losses are summarized in Table 3. ResNet50 

achieved the highest training accuracy at 95.17% and the lowest training loss at 16.35%, highlighting its strong 

ability to learn and accurately classify disease-affected banana leaf images. EfficientNet followed with a training 

accuracy of 91.42% and a training loss of 24.81%, demonstrating robust learning performance. InceptionV3 

achieved a training accuracy of 87.29% with a loss of 34.27%, while VGG-19 recorded the lowest training accuracy 

at 83.33% and the highest training loss at 47.57%, indicating its challenges in effectively learning from the training 

data. 

 

In terms of generalization to unseen data, EfficientNet outperformed other models, achieving the highest validation 

accuracy at 83.71% and a validation loss of 85.17%, showcasing its ability to generalize well. InceptionV3, despite 

ranking third in validation accuracy at 77.85%, demonstrated the lowest validation loss at 61.12%, indicating 

effective prediction with minimal errors on unseen data. ResNet50, while excelling in training performance, 

struggled with generalization, as reflected by its validation accuracy of 78.18% and a high validation loss of 

142.81%. Similarly, VGG-19, which showed the weakest training performance, also displayed limited 

generalization with a validation accuracy of 76.22% and a validation loss of 114.02%. 

 

Table 3:- Training and Validation Accuracy and Loss Results for Each Classifier. 

Model No. of Epochs 
Training 

Accuracy (%) 

Training 

Loss (%) 

Validation 

Accuracy (%) 

Validation 

Loss (%) 

VGG-19 50 83.83 47.57 76.22 114.02 

ResNet50 50 95.17 16.35 78.18 142.81 

InceptionV3 50 87.29 34.27 77.85 61.12 

EfficientNet 50 91.42 24.81 83.71 98.97 

 

Validation loss reflects the total errors generated from each image input in the validation dataset. All models 

exhibited signs of overfitting, fitting well on the training dataset but not generalizing effectively to unseen data. This 

overfitting may be attributed to the complexity of the models relative to the dataset or the duration of the training 

period. A detailed comparison of training accuracy and loss curves for each model is presented in Figure 5 offering 

further insights into their learning behavior and generalization capabilities. 
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Figure 5:- Training and Validation Accuracy and Loss Curvesfor Each Model Classifier. 

 
 

Testing Accuracy and Loss 

To assess how effectively the model classifiers generalize to unseen data, they were evaluated using a dedicated test 

dataset in this study. The results, presented in Table 4, reveal key insights into the banana disease classification 

performance based on test accuracy and loss metrics. EfficientNet emerged as the top performer, achieving the 

highest testing accuracy at 90.67% and the lowest testing loss of 44.59% among the four model classifiers. This 

highlights EfficientNet's robust capability to accurately classify disease-affected banana leaf images that were 

previously unseen during training and validation phases. ResNet50 followed closely with the second-highest testing 

accuracy of 88.67%, albeit with a higher test loss of 68.74%. VGG-19 demonstrated an 85.33% testing accuracy and 

a test loss of 60.3%, indicating reliable performance but with slightly higher error rates compared to EfficientNet 

and ResNet50. InceptionV3, while achieving an 81.33% testing accuracy, exhibited a test loss of 53.44%, 

positioning it with the lowest accuracy among the models tested on the test dataset. 

 

Table 4:- Testing Accuracy and Loss Results for Each Classifier.  

Model Test Accuracy Test Loss 

VGG-19 85.33 60.3 

ResNet50 88.67 68.74 

InceptionV3 81.33 53.44 

EfficientNet 90.67 44.59 

 

These findings underscore EfficientNet's effectiveness in generalizing to new, unseen data, demonstrating superior 

accuracy and minimized errors in classifying banana diseases. The comparative analysis provided in Table 5 and 

Figure 11 offers clear insights into each model's performance metrics, aiding in the selection and optimization of 

CNN models for practical applications in agricultural disease detection. 

 

Despite achieving high accuracy rates on the training dataset, the validation performance of the four model 

classifiers in this study revealed significantly higher losses compared to their training phases, indicating potential 

overfitting issues. This disparity suggests that while the models effectively learned the training data patterns, they 

struggled to generalize to unseen validation data. To mitigate overfitting, strategies such as ModelCheckpoint, 
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ReduceLROnPlateau, and EarlyStopping callbacks were employed, halting training when validation loss 

improvements ceased. Notably, ResNet50 ceased training at Epoch 13, EfficientNet at Epoch 19, and InceptionV3 at 

Epoch 18, underscoring the complexities of model optimization in real-world applications like banana disease 

classification. Addressing these challenges, insights from Ashaari et al.(2013) advocate for a holistic approach 

beyond accuracy, emphasizing the utility of metrics like confusion matrices and classification reports to 

comprehensively evaluate model performance, as applied in the analysis of test datasets in this study. 

 

Performance Evaluation 

The results derived from the confusion matrix and classification reports offer a detailed performance summary of the 

pre-trained convolutional neural network (CNN) models used for banana leaf disease classification. The evaluation 

focuses on four key performance metrics: accuracy, precision, recall, and f1-score. These metrics provide an in-

depth understanding of model behavior on a class-by-class basis, allowing for a granular analysis of the strengths 

and limitations of each model. 

 

The confusion matrices (as seen in Figure6) and classification reports (as seen in Table 5) were presented for each 

model classifier generated from the images in the test dataset. 

 

Table 5:- Classification Report for Each Model Classifier. 

Model  Precision Recall F1-Score Support 

Resnet50 

Bunchy Top 0.88 0.98 0.93 60 

Fusarium Wilt 0.91 0.88 0.90 60 

Moko 0.88 0.70 0.78 60 

Sigatoka 0.88 0.70 0.78 60 

Healthy 1.00 0.98 0.99 60 

     

Accuracy   0.89 300 

Macro AVG 0.89 0.89 0.88 300 

Weighted AVG 0.89 0.89 0.88 300 

EfficientNet 

Bunchy Top 0.92 0.95 0.93 60 

Fusarium Wilt 0.87 0.90 0.89 60 

Moko 0.88 0.87 0.87 60 

Sigatoka 0.88 0.82 0.84 60 

Healthy 0.98 1.00 0.99 60 

     

Accuracy   0.91 300 

Macro AVG 0.91 0.91 0.91 300 

Weighted AVG 0.91 0.91 0.91 300 

VGG19 

Bunchy Top 0.89 0.97 0.93 60 

Fusarium Wilt 0.80 0.85 0.82 60 

Moko 0.79 0.68 0.73 60 

Sigatoka 0.82 0.83 0.83 60 

Healthy 0.97 0.93 0.95 60 

     

Accuracy   0.85 300 

Macro AVG 0.85 0.85 0.85 300 

Weighted AVG 0.85 0.85 0.85 300 

InceptionV3 

Bunchy Top 0.81 0.93 0.87 60 

Fusarium Wilt 0.83 0.72 0.77 60 

Moko 0.88 0.60 0.71 60 

Sigatoka 0.68 0.83 0.75 60 

Healthy 0.91 0.98 0.94 60 

     

Accuracy   0.81 300 

Macro AVG 0.81 0.81 0.81 300 
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Weighted AVG 0.81 0.81 0.81 300 

 

EfficientNet emerged as the top-performing model, achieving the highest overall accuracy of 91%. This model 

exhibited consistently strong performance across disease classes, underpinned by its ability to generalize effectively 

to unseen data. Precision rates for healthy leaves (98%), Bunchy Top disease (92%), Fusarium Wilt (87%), and 

Sigatoka disease (88%) reflect its precise classification capabilities. Moreover, recall scores were particularly 

impressive for healthy leaves (100%) and Bunchy Top disease (95%), indicating high sensitivity in detecting these 

classes. These metrics culminated in exceptional f1-scores, with healthy leaves achieving 99% and Bunchy Top 

disease reaching 93%. EfficientNet’s balanced performance across precision, recall, and f1-score underscores its 

robustness and adaptability in handling the inherent complexity of banana leaf disease classification. 

 

ResNet50 closely followed EfficientNet, achieving an overall accuracy of 89%. The model excelled in identifying 

healthy leaves, with perfect precision (100%), high recall (98%), and an f1-score of 99%. For Bunchy Top disease, 

ResNet50 demonstrated robust metrics with 88% precision, 98% recall, and a 93% f1-score. Fusarium Wilt also 

recorded strong performance with 91% precision, 88% recall, and 90% f1-score. However, the model faced 

challenges with Moko disease, achieving a lower recall (70%) and f1-score (78%), which indicates potential 

difficulties in distinguishing this disease from other categories. These results highlight ResNet50's overall strength 

in disease classification, particularly for less ambiguous cases, while pinpointing areas requiring refinement for 

more complex disease presentations. 

 

VGG19 exhibited comparatively lower performance, with an overall accuracy of 85%. While it achieved high 

precision for healthy leaves (97%) and Bunchy Top disease (89%), its precision scores for Fusarium Wilt (80%), 

Sigatoka (82%), and Moko disease (79%) were less consistent. Recall metrics were strongest for Bunchy Top 

disease (97%) and healthy leaves (93%), but declined for Moko disease (73%) and Sigatoka (79%), resulting in 

lower f1-scores for these categories. These results suggest that VGG19 struggles to achieve consistent classification 

across all disease types, particularly for more challenging classes like Moko disease. However, its solid performance 

in detecting non-diseased and straightforward cases indicates its utility in simpler classification scenarios. 

 

InceptionV3, with an overall accuracy of 81%, demonstrated variable performance across disease classes. Healthy 

leaves achieved the highest precision (91%), recall (98%), and f1-score (94%), showcasing the model's strong 

capability in identifying non-diseased samples. Bunchy Top disease also performed well, with an f1-score of 87%, 

supported by 81% precision and 93% recall. However, the model struggled with Moko disease, achieving lower 

precision (88%) and recall (60%), resulting in an f1-score of 71%. Sigatoka disease exhibited similar variability, 

with moderate precision (82%) and recall (78%). These metrics underscore InceptionV3's potential for classifying 

certain diseases effectively but highlight the need for enhancements to handle challenging cases with greater 

reliability. 

 

The classification reports for all models provided weighted averages across precision, recall, and f1-score, offering a 

holistic view of their performance. EfficientNet led with a weighted average of 0.91, indicating a superior balance 

between accuracy, sensitivity, and specificity. ResNet50 followed with weighted averages of 0.89 for precision and 

recall, and 0.88 for f1-score, demonstrating strong overall performance. In contrast, VGG19 and InceptionV3, with 

weighted averages of 0.85 and 0.81, respectively, reflected weaker and more inconsistent performance across the 

dataset. These findings suggest that EfficientNet and ResNet50 are more suitable for complex disease classification 

tasks, while VGG19 and InceptionV3 may benefit from further fine-tuning or augmentation to improve 

performance, particularly for more challenging disease classes. 

 

Overall, these results highlight the effectiveness of EfficientNet and ResNet50 for banana leaf disease classification. 

Despite their strong overall performance, challenges remain, particularly with the classification of Moko disease, 

which exhibited lower recall and f1-scores in most models. Future work could focus on addressing these challenges 

by augmenting the training dataset, fine-tuning the models, and exploring techniques such as transfer learning, data 

augmentation, and ensemble modeling. These strategies could improve model generalization and further enhance 

classification accuracy, particularly for underrepresented or complex disease classes. The findings from this 

evaluation provide a robust foundation for deploying CNN-based models in practical applications, such as precision 

agriculture and disease monitoring systems, where accurate disease detection is critical for improving crop 

management and productivity. 

 



ISSN: 2320-5407                                                                            Int. J. Adv. Res. 12(12), 697-711 

708 

 

Figure 6:- Confusion Matricesfor Each Model Classifier. 

 
 

Conclusion:- 
Banana diseases pose significant challenges to farmers, potentially leading to substantial losses in the banana 

industry if left unchecked. This research addresses these issues by developing a web-based banana disease detection 

system using Python, TensorFlow, and Streamlit. The system classifies common banana diseases—Bunchy top, 

Fusarium wilt, Moko, Sigatoka—and identifies healthy banana leaves from uploaded images. A dataset of 3,000 

banana leaf images was utilized, divided into training, validation, and test sets, resized to 224 x 224 pixels, and 

trained using four convolutional neural network architectures: VGG19, InceptionV3, ResNet50, and EfficientNet. 

Optimization was performed using the Adam optimizer across 50 epochs. Evaluation metrics showed EfficientNet 

achieving the highest accuracy of 91% among the models. Thus, EfficientNet was implemented in the web 

application, providing farmers with disease classification and preventive measures to manage banana plant health 

effectively. 
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Recommendations:- 
Future studies aiming to enhance model accuracy should standardize image capture methodologies. Images should 

be captured in controlled environments with high-resolution cameras (≥15 megapixels) (Bindushree& Sivasankari, 

2015), preferably against a plain white background [51], maintaining optimal distances (9 – 12 inches)(Zhang, 2020; 

Bindushree& Sivasankari, 2015;Concepcion et al., 2022) or at most 11 – 24 inches(Li et al., 2022; Radha et al., 

2017). Consideration of various lighting conditions—natural light, flash on/off, backlighting—can further enrich the 

dataset, as suggested by Rzannyet al. (2017). Including images at different angles (0°, 45°, 60°, 90°) based on a 

study by Wang et al. (2022) and employing data augmentation techniques will increase dataset diversity, reducing 

overfitting and enhancing model generalization. Optimization strategies such as larger image sizes, batch sizes (e.g., 

64, 128), additional layers, and extended epochs should be explored to refine model learning capabilities. Integration 

of negative images during validation can strengthen models' ability to distinguish non-banana objects. However, it's 

noted that CNNs may struggle with negative image recognition due to inherent limitations in semantic 

understanding of objects. Nevertheless, in the study conducted by Hosseini et al. (2017), it is revealed that even 

though CNN has been considered impressive in terms of its performance in identifying similar images used in 

training, it showed that it has limitations in recognizing negative images wherein the results turned out poorly with 

much lower accuracy. Hosseini et al.(2017) observations after the study indicate that when CNN is trained in raw 

data, it cannot recognize the semantics of the objects. With this, it could be a good starting idea to focus on for 

future researchers who wish to conduct similar but more advanced studies on bananas. Furthermore, usability testing 

of the web application is recommended to assess its performance and user-friendliness, ensuring practical utility in 

agricultural settings. 
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