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Glycemic Control is a major determinant for people with prediabetes 

and diabetes. Lifestyle factors plays major role in diabetes.It influence 

and affect the regulation of blood sugar levels.Adopting a balanced 

lifestyle is a critical determinant of both physical health and economic 

well-being.Poor health often reflects an individual's sedentary 

lifestyle.Every individual should prioritize their health. An unhealthy 

lifestyle is a gateway to diseases. These diseases can only be managed 

and controlled but cannot be cured. Diabetes is a progressive condition 

that tends to worsen over time, leading to increased complications. 

Technology advances are a blessing to mankind for managing the 

health in a proper way. Machinelearning, which is a subset of Artificial 

Intelligence is aiding medical field to identify the crucial features that 

are very relevant to diseases. In this paper the lifestyle features are 

identified that results in the major complications in diabetic population. 

 
Copyright, IJAR, 2024,. All rights reserved. 

…………………………………………………………………………………………………….... 

Introduction:- 
Lifestyle is the way a person lives. It includes the activities from morning to night. Start from morning eating habits 

to night sleep patterns. Individual health will get affected if they have sedentary lifestyle. The diseases which we get 

depending upon our lifestyle are called chronic diseases. These diseases cannot be cured but can be managed and 

controlled effectively. There are many chronic diseases like lung cancer, diabetes, stroke, and various cardiovascular 

problems. Diabetes is a chronic disease that is   affecting millions of people all over the world. It is growing 

exponentially and is affecting every age group. Diabetes is a chronic condition that affects body glucose levels. It is 

of two types: Type 1 and Type 2. Type 1 is insulin dependent and normally diagnosed in childhood. It affects 

autoimmune cells that produce insulin. Type 2 is insulin independent and often associated with life modifiable 

factors   and can be effectively managed with a change in lifestyle choices. Type 2 diabetes is also called diabetes 

mellitus. If not properly managed, diabetes can lead to various health complications, as it impacts nearly every part 

of the body. After its diagnosis there is a need to take extra care of the individual lifestyle habits as it will further 

result in health complications. Its complications can be defeated with the right care and knowledge. Effective 

diabetes management requires developing a structured approach to improve the condition and prevent 

complications. These complications cannot be predicted. Key reason for the deterioration of the diabetic 

complications is lifestyle. There is a need to check various parameters of a diabetic individual. The very first and 

foremost parameter is to manage ABCs(A1C,blood pressure, cholesterol)  by regular monitoring ,taking medications 

and maintaining proper weight with healthy diet. The progression of the disease will further lead to health 

deterioration which will cost both money and life. The individual can also be physically challenged or can have 

other health issues that result in bad health conditions. It is considered as the major reason of mortality and 

morbidity all over the world. There is a dire need to find and identify the key parameters in the lifestyle that cause 
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and sources the disease. Feature selection and identification will help us to understand the relationship between 

progressions of the disease. Feature selection in machine learning work toward identifying a subset of relevant 

features. It focused on identifying significant features depending upon the numeric values within an interval range. It 

evaluates and assesses the crucial parameters of disease that are essential to be studied. Identification of patterns and 

lifestyle that influence blood glucose levels using machine learning. The progression of the disease can be measured 

by keeping track of lifestyle that elevates the glucose levels. Progression of disease from mild to moderate, severe, 

and critical condition can be identified only by patterns that can be taken from medical records, symptoms, and 

genes. The focus of the research is to identify patterns of patients’ clinical profile with diseases by selecting key 

parameters of the disease complications. Analysis from data can be done by finding the variance between normal 

and abnormal values for specified diabetic complications. Silent progression and less awareness will increase the 

diabetic complications 

 

Literature Review:- 
Previous research has predominantly focused on individual lifestyle factors such as diet or physical act ivity 

concerning glycemic control, overlooking the collective influence of various lifestyle factors on diabetes 

management outcomes. For instance, while dietary habits have been extensively studied (Evert et al., 2019), the 

comprehensive evaluation of lifestyle factors, including diet, physical activity, sleep patterns, psychosocial factors, 

and medication adherence, remains limited. Therefore, this study aims to bridge this gap by comprehensively 

examining the interplay between these factors and their combined impact on glycemic control and health outcomes 

in diabetic individuals. Many studies have been conducted in relatively homogeneous populations, neglecting the 

influence of cultural, socioeconomic, and demographic factors on diabetes outcomes. For instance, Morrato et al. 

(2017) highlighted the need for research that considers diverse populations. Therefore, this study endeavors to fill 

this gap by including participants from diverse demographic backgrounds, enabling a more nuanced understanding 

of how lifestyle factors affect glycemic control and health outcomes across different populations. Longitudinal 

While short-term effects of lifestyle interventions on glycemic control have been investigated, there is a dearth of 

research examining their long-term sustainability and effectiveness. For example, Shrivastava et al. (2020) 

emphasized the importance of longitudinal studies. Thus, this study seeks to address this gap by implementing a 

longitudinal study design, allowing for the assessment of how lifestyle changes impact glycemic control and health 

outcomes over time. Previous research has heavily relied on self-reported data, which may be subject to recall bias 

and inaccuracies. Despite this, objective measures such as biochemical analyses and objective assessments of 

physical activity and sleep patterns have been underutilized. As highlighted by Liu et al. (2015), this integration is 

crucial for a robust evaluation of lifestyle factors and their impact on diabetes outcomes. Therefore, this study aims 

to overcome this limitation by integrating objective measures with self-reported data, providing a more 

comprehensive evaluation of lifestyle factors and their influence on diabetes management outcomes. 

 

Dataset 

The Diabetes health indicators dataset available on kaggle has 21 features variables. This dataset can be used for the 

classification of prediabetes, normal and diabetes on the basis of 21 lifestyle attributes .These attributes provides a 

range of information like highBP, high Cholesterol, smoking, eating fruits and vegetables and so on. This dataset 

provides valuable insights of lifestyle parameters and health indicators that can be used as the basis of diabetes stage 

classification.  

 
Exploratory Data Analysis  

The diabetes health indicators datasets shows a valuable insights from our daily lifestyle that indicates towards the 

disease stage like normal, prediabetes or diabetes   

 

The importance of various health indicators from the dataset are  shown with the help of feature importance as 

shown in figure. 
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Figure 1:- Feature Importance. 

 
Fig2. Sleep and lifestyle  

Out of 21 features   from lifestyle these are the seven major determinants that need to be monitored for the 

classification of disease that affects the glycemic control. The prediabetes stage can be cured if it is diagnosed at an 

early stage. The lifestyle needs to be managed with controlling all the above features so that we can lead a healthy 

life. Every Body has a different body composition but these parameters are highly associated with glycemic control. 

There is a need to modify the lifestyle which will help to control the disease rather to progress towards disease 

complications. As the technology is impacting everybody’s life from child to elderly people. Sleep patterns and 
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mental health, occupation are also considered, as the key factors for glycemic control which are not present in 

thisdataset. These factors are stored in a separate dataset called sleep and lifestyle present on the kaggle. 

 

Evaluation and Assessment of lifestyle factors are crucial for glycemic control. Early Identification can prevent or 

delay the progression of the disease. Addressing lifestyle factors acknowledges the complex interplay of 

behavioural, physiological, and psychosocial elements, to empower patients in self-management. 

 

Methodology for Lifestyle Assessment impacting glycemic control 

 Dietary Analysis: Use of food diaries, 24-hour dietary recalls, and validated questionnaires to evaluate dietary 

intake and patterns. 

 Physical Activity Monitoring: Wearable devices, accelerometers, and self-reported activity logs to measure 

exercise levels and sedentary behavior. 

 Sleep Assessment: Polysomnography, actigraphy, and sleep questionnaires to assess sleep duration and quality. 

 Stress Evaluation: Standardized scales, such as the Perceived Stress Scale (PSS) and Beck Depression 

Inventory (BDI), to gauge psychological stress and mental health status. 

 Substance Use Assessment: Surveys and biomarkers to evaluate alcohol consumption and smoking habits. 

 

Conclusion:- 
Lifestyle factors, including diet, physical activity, sleep, stress, alcohol, and tobacco use, significantly influence 

glycemic control. Comprehensive assessment and personalized interventions are essential to optimize blood glucose 

levels and prevent diabetes-related complications. Future research should focus on integrating emerging 

technologies, addressing socioeconomic disparities, and exploring novel intervention strategies to enhance glycemic 

management. A combined dataset incorporating lifestyle factors, clinical outcomes, and behavioural patterns would 

facilitate more robust analyses and personalized intervention designs. This dataset should integrate data from diverse 

populations to ensure inclusivity and generalizability. Additionally, leveraging machine learning and predictive 

modelling can uncover hidden patterns and identify high-impact lifestyle modifications tailored to individual needs. 
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