

RESEARCH ARTICLE

δ_{I} -SEMI-CONNECTED AND COMPACT SPACES IN IDEAL TOPOLOGICAL SPACES

A. Anis Fathima¹ and M. Maheswari²

- 1. Department of Mathematics, Gobi Arts & Science College, Gobichettipalayam 638453, Tamil Nadu, India.
- 2. Department of Mathematics, N.G.M College, Pollachi-642001, Tamil Nadu, India.

Manuscript Info	Abstract
<i>Manuscript History</i> Received: 07 October 2024 Final Accepted: 09 November 2024 Published: December 2024	In this paper, we introduce $\delta_{\mathbf{I}}$ -s-sep sets, $\delta_{\mathbf{I}}$ -s-con and $\delta_{\mathbf{I}}$ -s-com spaces also study some of its properties in topological spaces via ideals.
Kev words:-	

 $\delta_{\mathbf{I}}$ -s-sep sets, $\delta_{\mathbf{I}}$ -s-con spaces, $\delta_{\mathbf{I}}$ -s-discon Spaces and $\delta_{\mathbf{I}}$ -s-com spaces

Copyright, IJAR, 2024,. All rights reserved.

.....

Introduction:-

The notion of ideal in topological spaces was studied by Kuratowski [8] & Vaidyanathaswamy [12]. Applications to various fields in ideal topological spaces were investigated by Jankovic and Hamlett [7], Dontchev et al. [3], Mukherjee et al. [9], Arenas et al. [2], Navaneethakrishnan et al. [11], Nasef and Mahmoud [10], etc. In 2008, Ekici and Noiri [4] introduced the notion of connectedness in ideal topological spaces.

Preliminaries

Throughout this paper, (X, τ, I) and (Y, σ, I) (or simply X and Y), always mean ideal topological spaces on which no separation axioms are assumed.

Definition 2.1. [1] A subset A of an ideal topological space (X, τ, I) is said to be δ_{I} -s-o if

 $A \subseteq cl^*(int_{\delta}(A)). \text{ The complement of } \delta_{\mathbf{I}} \text{ -s-o set is called } \delta_{\mathbf{I}} \text{ -s-cl set.}$

Definition 2.2. [1] Let A be a subset of an ideal topological space (X, τ, I) and x be a point of X. Then

1. x is called a $\delta_{\mathbf{I}}$ -s-clu point of A if $A \cap U \neq \emptyset$ for every $U \in \delta_{\mathbf{I}} SO(\mathbf{X})$,

2. the family of all $\delta_{\mathbf{I}}$ -s-clu points of A is called $\delta_{\mathbf{I}}$ -s-clo of A and is denoted by $scl_{\delta_{\mathbf{T}}}(A)$.

Definition 2.3. [5] A function $f : (X, \tau, I) \to (Y, \sigma, I)$ is said to be δ_I -s- irresolute if inverse image of every δ_I -s-o set in Y is δ_I -s-o set in X.

Definition 2.4. [6] A function $f : (X, \tau, I) \to (Y, \sigma)$ is said to be contra δ_I -s-continuous if $f^{-1}(V)$ is δ_I -s-cl in X for each open set V of Y.

Corresponding Author:- A. Anis Fathima Address:- Department of Mathematics, Gobi Arts & Science College, Gobichettipalayam - 638453, Tamil Nadu, India.

δ_I-semi-separated

Definition 3.1. Let (X, τ, I) be an ideal topological space. Two non-empty subsets M and N are said to be $\delta_{\mathbf{I}}$ -semi-separated { simply written as $\delta_{\mathbf{I}}$ -s-sep } if and only if $M \cap \operatorname{scl}_{\delta_{\mathbf{I}}}(N) = \emptyset$ and $\operatorname{scl}_{\delta_{\mathbf{I}}}(M) \cap N = \emptyset$. i.e., $[M \cap \operatorname{scl}_{\delta_{\mathbf{I}}}(N)] \cup [\operatorname{scl}_{\delta_{\mathbf{I}}}(M) \cap N] = \emptyset$.

Definition 3.2. If $X = M \cup N$ such that M and N are non-empty δ_I -s-sep sets in (X, τ, I) then M, N form a δ_I -s-separation of X.

Example 3.3. Let $X = \{a, b, c, d\}$ with topology $\tau = \{\emptyset, \{a\}, \{b, d\}, \{a, b, d\}, X\}$ and $I = \{\emptyset, \{a\}\}$. Consider $P = \{a\}$, $Q = \{b\}$ and $R = \{d\}$. Then the sets P and Q are δ_I -s-sep but the sets Q and R are not δ_I -s-sep.

Definition 3.4. A point $x \in X$ is said to be an δ_I -s-adherent point of a subset A of an ideal topological space (X, τ, I) if every δ_I -s-o set containing x, contains at least one point of A.

Remark 3.5. Two $\delta_{\mathbf{I}}$ -s-sep sets are always disjoint. But two disjoint sets need not be $\delta_{\mathbf{I}}$ -s-sep. In Example 3.3, the sets Q and R are disjoint but not $\delta_{\mathbf{I}}$ -s-sep.

Theorem 3.6. Two sets are $\delta_{\mathbf{I}}$ -s-sep if and only if they are disjoint and neither of them contains $\delta_{\mathbf{I}}$ -s-clu point of the other.

Proof. Let A and B be $\delta_{\mathbf{I}}$ -s-sep. Now, $A \cap \operatorname{scl}_{\delta_{\mathbf{I}}}(B) = \emptyset \Leftrightarrow A \cap (B \cup B_1) = \emptyset$, where the set

 \mathbf{B}_1 denotes the set of all $\delta_{\mathbf{I}}$ -s-clu points of $\mathbf{B} \Leftrightarrow \mathbf{A}$ and \mathbf{B} are disjoint and \mathbf{A} contains no $\delta_{\mathbf{I}}$ -s-clu point of \mathbf{B} . Similally, $\operatorname{scl}_{\delta_{\mathbf{I}}}(\mathbf{A}) \cap \mathbf{B} = \emptyset$ if and only if \mathbf{A} and \mathbf{B} are disjoint and \mathbf{B} contains no $\delta_{\mathbf{I}}$ -s-clu point of \mathbf{A} .

Theorem 3.7. Subsets of $\delta_{\mathbf{I}}$ -s-sep sets are $\delta_{\mathbf{I}}$ -s-sep.

Proof. Let C and D be subsets of two $\delta_{\mathbf{I}}$ -s-sep sets A and B respectively. Then $A \cap \operatorname{scl}_{\delta_{\mathbf{I}}}(B) = \emptyset$ and $\operatorname{scl}_{\delta_{\mathbf{I}}}(A) \cap B = \emptyset$. Then we have $C \cap \operatorname{scl}_{\delta_{\mathbf{I}}}(D) \subseteq A \cap \operatorname{scl}_{\delta_{\mathbf{I}}}(B) = \emptyset$ and $\operatorname{scl}_{\delta_{\mathbf{I}}}(C) \cap D \subseteq \operatorname{scl}_{\delta_{\mathbf{I}}}(A) \cap B = \emptyset$. Thus C and D are $\delta_{\mathbf{I}}$ -s-sep.

Theorem 3.8. Two $\delta_{\mathbf{I}}$ -s-cl subsets of X are $\delta_{\mathbf{I}}$ -s-sep if and only if they are disjoint.

Proof. By Remark 3.5 $\delta_{\mathbf{I}}$ -s-cl separated sets are disjoint.

Conversely, let A and B be two $\delta_{\mathbf{I}}$ -s-cl disjoint sets. Then we have $\operatorname{scl}_{\delta_{\mathbf{I}}}(A) = A$, $\operatorname{scl}_{\delta_{\mathbf{I}}}(B) = B$ and $A \cap B = \emptyset$. Consequently, $A \cap \operatorname{scl}_{\delta_{\mathbf{I}}}(B) = \emptyset$ and $\operatorname{scl}_{\delta_{\mathbf{I}}}(A) \cap B = \emptyset$. Hence A and B are $\delta_{\mathbf{I}}$ -s-sep.

Theorem 3.9. Two $\delta_{\mathbf{I}}$ -s-o subsets of X are $\delta_{\mathbf{I}}$ -s-sep if and only if they are disjoint. **Proof.** By Remark 3.5 $\delta_{\mathbf{I}}$ -s-o separated sets are disjoint.

Conversely, let P and Q be two $\delta_{\mathbf{I}}$ -s-o disjoint sets. Suppose that $P \cap \operatorname{scl}_{\delta_{\mathbf{I}}}(Q) \neq \emptyset$ and let

 $\mathbf{x} \in \mathbf{P} \cap \operatorname{scl}_{\delta_{\mathbf{I}}}(\mathbf{Q})$. Then $\mathbf{x} \in \mathbf{P}$ and \mathbf{x} is a $\delta_{\mathbf{I}}$ -s-adherent point of \mathbf{Q} . Since \mathbf{P} is a $\delta_{\mathbf{I}}$ -s-o set containing \mathbf{x} and \mathbf{x} is a $\delta_{\mathbf{I}}$ -s-adherent point of \mathbf{Q} , therefore \mathbf{P} must contain at least one point of \mathbf{Q} . Thus we have $\mathbf{P} \cap \mathbf{Q} \neq \emptyset$ which is a contradicton. Therefore $\mathbf{P} \cap \operatorname{scl}_{\delta_{\mathbf{I}}}(\mathbf{Q}) = \emptyset$. Similarly, $\operatorname{scl}_{\delta_{\mathbf{I}}}(\mathbf{P}) \cap \mathbf{Q} = \emptyset$. Hence \mathbf{P} and \mathbf{Q} are $\delta_{\mathbf{I}}$ -s-sep.

Theorem 3.10. If the union of two $\delta_{\mathbf{I}}$ -s-sep sets is a $\delta_{\mathbf{I}}$ -s-cl set then the individual sets are $\delta_{\mathbf{I}}$ -s-cl of themselves.

Proof. Let M and N be two $\delta_{\mathbf{I}}$ -s-sep sets such that $M \cup N$ is $\delta_{\mathbf{I}}$ -s-cl. Now, $M \cup N = \operatorname{scl}_{\delta_{\mathbf{I}}}(M \cup N) \supseteq \operatorname{scl}_{\delta_{\mathbf{I}}}(M) \cup \operatorname{scl}_{\delta_{\mathbf{I}}}(B)$. Therefore $\operatorname{scl}_{\delta_{\mathbf{I}}}(M) = \operatorname{scl}_{\delta_{\mathbf{I}}}(M) \cap [\operatorname{scl}_{\delta_{\mathbf{I}}}(M) \cup \operatorname{scl}_{\delta_{\mathbf{I}}}(N)] \subseteq \operatorname{scl}_{\delta_{\mathbf{I}}}(M) \cap [M \cup N] = M$. Thus we have $\operatorname{scl}_{\delta_{\mathbf{I}}}(M) = M$. Similarly, $\operatorname{scl}_{\delta_{\mathbf{I}}}(M) = M$.

Theorem 3.11. If the union of two $\delta_{\mathbf{I}}$ -s-sep sets is δ -open, then the individual sets are $\delta_{\mathbf{I}}$ -s-o.

Proof. Let M and N be two $\delta_{\mathbf{I}}$ -s-sep sets such that $M \cup N$ is δ -open. Therefore we have

 $M \cup N \cap [scl_{\delta_{\mathbf{I}}}(N)]^c$ is $\delta_{\mathbf{I}}$ -s-0 and so $M \cup N \cap [scl_{\delta_{\mathbf{I}}}(N)]^c = M$. This implies M is $\delta_{\mathbf{I}}$ -s-0. Similarly, we can prove N is $\delta_{\mathbf{I}}$ -s-0.

$\delta_{\mathbf{I}}$ -semi-connected

Definition 4.1. A space (X, τ, I) is δ_I -s-con if and only if X has no δ_I -s-separation.

If X is not $\delta_{\mathbf{I}}$ -s-con then it is $\delta_{\mathbf{I}}$ -s-discon.

Definition 4.2. A subset of $(\mathbf{X}, \tau, \mathbf{I})$ is $\delta_{\mathbf{I}}$ -s-con if it is $\delta_{\mathbf{I}}$ -s-con as a subspace.

Theorem 4.3. An ideal topological space (X, τ, I) is δ_I -s-discon if and only if there exist a non-empty proper subset of X which is both δ_I -s-o and δ_I -s-cl.

Proof. Necessity: Let $(\mathbf{X}, \tau, \mathbf{I})$ be $\delta_{\mathbf{I}}$ -s-discon. Then there exist non-empty $\delta_{\mathbf{I}}$ -s-sep subsets M and N of X such that $M \cup N = \mathbf{X}$. Therefore $\operatorname{scl}_{\delta_{\mathbf{I}}}(M) \cup N = \mathbf{X}$, $M \cup \operatorname{scl}_{\delta_{\mathbf{I}}}(N) = \mathbf{X}$ and $M \cap N = \emptyset$. Thus we have $M = \mathbf{X} - N$, $M = \mathbf{X} - \operatorname{scl}_{\delta_{\mathbf{I}}}(N)$ and $N = \mathbf{X} - \operatorname{scl}_{\delta_{\mathbf{I}}}(M)$. This shows that, M is non-empty proper subset of X which is both $\delta_{\mathbf{I}}$ -s-o and $\delta_{\mathbf{I}}$ -s-cl.

Sufficiency: Let M be a non-empty proper subset of X which is both $\delta_{\mathbf{I}}$ -s-o and $\delta_{\mathbf{I}}$ -s- cl.

Then, M^c is a non-empty proper subset of X which is both $\delta_{\mathbf{I}}$ -s-cl and $\delta_{\mathbf{I}}$ -s-o. Thus $M \cap M^c = \emptyset$, $scl_{\delta_{\mathbf{I}}}(M) = M$ and $scl_{\delta_{\mathbf{I}}}(M^c) = M^c$ and therefore $scl_{\delta_{\mathbf{I}}}(M) \cap M^c = M \cap M^c = \emptyset$ and $M \cap scl_{\delta_{\mathbf{I}}}(M^c)$ $= M \cap M^c = \emptyset$. Also $\mathbf{X} = M \cup M^c$. Hence X is $\delta_{\mathbf{I}}$ -s-discon.

Theorem 4.4. An ideal topological space (X, τ, I) is δ_I -s-discon if and only if X is the union of nonempty disjoint δ_I -s-o sets.

Proof. Necessity: Let X be $\delta_{\mathbf{I}}$ -s-discon. Then there exist a non-empty proper subset M of X which is both $\delta_{\mathbf{I}}$ -s-o and $\delta_{\mathbf{I}}$ -s-cl. Therefore M^c is a non-empty proper subset of X which is both $\delta_{\mathbf{I}}$ -s-o and $\delta_{\mathbf{I$

Sufficiency: Let X be the union of two non-empty disjoint $\delta_{\mathbf{I}}$ -s-o sets M and N. Then $N^c = M$. Now N is $\delta_{\mathbf{I}}$ -s-o, it follows that M is $\delta_{\mathbf{I}}$ -s-cl. Since $N \neq \emptyset$, it implies that M is a non-empty proper subset of X which is both $\delta_{\mathbf{I}}$ -s-o and $\delta_{\mathbf{I}}$ -s-cl. This shows that X is $\delta_{\mathbf{I}}$ -s-discon.

Theorem 4.5. An ideal topological space $(\mathbf{X}, \tau, \mathbf{I})$ is $\delta_{\mathbf{I}}$ -s-con if and only if \mathbf{X} cannot be written as the union of non-empty disjoint $\delta_{\mathbf{I}}$ -s-o sets. **Proof.** Obvious.

Corollary 4.6. A space (X, τ, I) is δ_I -s-con (resp. δ_I -s-discon) if and only if X cannot be written as (resp. can be written as) the union of non-empty disjoint δ_I -s-cl sets.

Theorem 4.7. An ideal topological space (X, τ, I) is δ_I -s-con if and only if the only subsets of X which is δ_I -s-o and δ_I -s-cl are \emptyset and X.

Proof. Let F be a $\delta_{\mathbf{I}}$ -s-o and $\delta_{\mathbf{I}}$ -s-cl subset of X. Then X – F is both $\delta_{\mathbf{I}}$ -s-o and $\delta_{\mathbf{I}}$ -s-cl. Since X is $\delta_{\mathbf{I}}$ -s-con, X can not be expressed as union of two disjoint non empty $\delta_{\mathbf{I}}$ -s-o sets F and X – F, which implies X – F is empty.

Conversely, suppose $X = U \cup V$ where U and V are disjoint non-empty $\delta_{\mathbf{I}}$ -s-o sets of X. Then U is both $\delta_{\mathbf{I}}$ -s-o and $\delta_{\mathbf{I}}$ -s-cl. Therefore by assumption, either $U = \emptyset$ or X, which contradicts the assumption that U and V are disjoint non-empty $\delta_{\mathbf{I}}$ -s-o subsets of X. Therefore X is $\delta_{\mathbf{I}}$ -s-con.

Corollary 4.8. If $f: (X, \tau, I) \to (Y, \sigma, J)$ is a δ_I -s-irresolute surjective function and X is δ_I -s-con, then Y is δ -s-con.

Theorem 4.9. If the sets P and Q form a $\delta_{\mathbf{I}}$ -s-separation of $(\mathbf{X}, \tau, \mathbf{I})$ and if $(\mathbf{Y}, \sigma, \mathbf{I})$ is $\delta_{\mathbf{I}}$ -s-con subspace of \mathbf{X} , then Y lies entirely within either P or Q.

Proof. Since P and Q form a $\delta_{\mathbf{I}}$ -s-separation of X. If $P \cap Y$ and $Q \cap Y$ were both non-empty, they would form a $\delta_{\mathbf{I}}$ -s-separation of Y, which is a contradiction. Therefore one of them is empty. Hence Y must lie entirely in P or in Q.

Theorem 4.10. A contra $\delta_{\mathbf{I}}$ -s-continuous image of a $\delta_{\mathbf{I}}$ -s-con space is connected.

Proof. Let $f : (X, \tau, I) \to (Y, \sigma)$ be a contra $\delta_{\mathbf{I}}$ -s-continuous function of a $\delta_{\mathbf{I}}$ -s-con space (X, τ, I) onto a topological space (Y, σ) . Suppose Y is disconnected. Let A and B form a separation of Y. Then A and B are clopen and $Y = A \cup B$ where $A \cap B = \emptyset$. Since f is contra $\delta_{\mathbf{I}}$ -s-continuous, $X = f^{-1}(Y) = f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B)$, where $f^{-1}(A)$ and $f^{-1}(B)$ are non-empty $\delta_{\mathbf{I}}$ -s-o sets in X. Also $f^{-1}(A) \cap f^{-1}(B)$

 $= \emptyset$. Hence X is not $\delta_{\mathbf{I}}$ -s-con. This is a contradiction. Therefore Y is connected.

Theorem 4.11. If A is $\delta_{\mathbf{I}}$ -s-con and $A \subseteq B \subseteq \operatorname{scl}_{\delta_{\mathbf{I}}}(A)$, then B is $\delta_{\mathbf{I}}$ -s-con.

Proof. Let A be $\delta_{\mathbf{I}}$ -s-con and let $A \subseteq B \subseteq \operatorname{scl}_{\delta_{\mathbf{I}}}(A)$. Suppose that B is not $\delta_{\mathbf{I}}$ -s-con, then C and D form a $\delta_{\mathbf{I}}$ -s-seperation of B. By Theorem 4.9, A must lie entirely in C or in D. Suppose that $A \subseteq C$ implies $\operatorname{scl}_{\delta_{\mathbf{I}}}(A) \cap D \subseteq \operatorname{scl}_{\delta_{\mathbf{I}}}(C) \cap D = \emptyset$. Also, $D \subseteq B \subseteq \operatorname{scl}_{\delta_{\mathbf{I}}}(A)$ implies

 $\operatorname{scl}_{\mathfrak{I}}(A) \cap D = D$. This shows that $D = \emptyset$, which is a contradiction. Similarly, we will have a contradiction for $A \subseteq D$. Therefore B is $\delta_{\mathfrak{I}}$ -s-con.

Corollary 4.12. The $\delta_{\mathbf{I}}$ -s-clo of a $\delta_{\mathbf{I}}$ -s-con set is $\delta_{\mathbf{I}}$ -s-con.

Theorem 4.13. If every two points of a set E are contained in some $\delta_{\mathbf{I}}$ -s-con subset of E, then E is $\delta_{\mathbf{I}}$ -s-con.

Proof. Suppose that E is not $\delta_{\mathbf{I}}$ -s-con. Then, E is the union of non-empty disjoint $\delta_{\mathbf{I}}$ -s- sep sets A and B. Since A and B are non-empty disjoint sets, let $a \in A$ and $b \in B$ and a, b are two distinct points of E. By hypothesis, there exists a $\delta_{\mathbf{I}}$ -s-con subset C of E such that a, $b \in C$. By Theorem 4.9, we have $C \subseteq A$ or $C \subseteq B$. This is not possible, since A and B are disjoint and C contains at least one point of A and one that of B. Thus a contradiction. Hence E is $\delta_{\mathbf{I}}$ -s-con.

Theorem 4.14. The union of any family of $\delta_{\mathbf{I}}$ -s-con sets having a non-empty intersection is $\delta_{\mathbf{I}}$ -s-con.

Proof. Let $\{E_{\alpha}\}$ be any family of $\delta_{\mathbf{I}}$ -s-con sets such that $\bigcap_{\alpha} E_{\alpha} \neq \emptyset$. Let $\mathbf{E} = \bigcup_{\alpha} E_{\alpha}$.

Suppose that E is not $\delta_{\mathbf{I}}$ -s-con, then A and B constitute a $\delta_{\mathbf{I}}$ -s-seperation of E. Since $\bigcap_{\alpha} E_{\alpha} \neq \emptyset$,

let $x \in \bigcap_{\alpha} E_{\alpha}$. Then x belongs to each E_{α} and so $x \in E$. Consequently, $x \in A$ or $x \in B$. Suppose

that $x \in A$, $E_{\alpha} \cap A \neq \emptyset$ for every α . From Theorem 4.9, $E_{\alpha} \subseteq A$ or $E_{\alpha} \subseteq B$. Since A and B are disjoint

and $E_{\alpha} \cap A \neq \emptyset$ for every α . We must have $E_{\alpha} \subseteq A$ for each α . Consequently, $\bigcup_{\alpha} E_{\alpha} \subseteq A$ or $E \subseteq A$. This shows that $B = \emptyset$, which is a contradiction. Hence E is $\delta_{\mathbf{I}}$ -s-con.

Corollary 4.15. Let $\{E_{\alpha}|\alpha \in \Lambda\}$ be a family of $\delta_{\mathbf{I}}$ -s-con subsets of $(\mathbf{X}, \tau, \mathbf{I})$ such that one of the members of this family intersects every other member. Then $\bigcup \{E_{\alpha}|\alpha \in \Lambda\}$ is $\delta_{\mathbf{I}}$ -s-con.

Proof. Let E_{α_0} be a member of the given family such that $E_{\alpha_0} \cap E_{\alpha} \neq \emptyset$ for every $\alpha \in \Lambda$. Then By Theorem 4.14, $C_{\alpha} = E_{\alpha_0} \cup E_{\alpha}$ is $\delta_{\mathbf{I}}$ -s-con for each α . Now, $\bigcup \{ C_{\alpha} | \alpha \in \Lambda \} = \bigcup \{ E_{\alpha_0} \cup E_{\alpha} | \alpha \in \Lambda \}$

 $= E_{\alpha_{\alpha}} \cup (\bigcup \{ E_{\alpha} | \alpha \in \Lambda \}) = \bigcup \{ E_{\alpha} | \alpha \in \Lambda \} \text{ and } \bigcap \{ C_{\alpha} | \alpha \in \Lambda \} = \bigcap \{ E_{\alpha_{\alpha}} \cup E_{\alpha} | \alpha \in \Lambda \} =$

 $\mathbf{E}_{\alpha_0} \cup (\bigcap \{ \mathbf{E}_{\alpha} | \alpha \in \Lambda \}) \neq \emptyset$. Thus $\bigcup \{ \mathbf{C}_{\alpha} | \alpha \in \Lambda \}$ is the union of $\delta_{\mathbf{I}}$ -s-con sets having a non-empty intersection is $\delta_{\mathbf{I}}$ -s-con. Therefore $\bigcup \{ \mathbf{E}_{\alpha} | \alpha \in \Lambda \}$ is $\delta_{\mathbf{I}}$ -s-con.

δ_I-semi-compact

Definition 5.1. A collection $\{A_{\alpha} | \alpha \in \Lambda\}$ of $\delta_{\mathbf{I}}$ -s-o sets in an ideal topological space $(\mathbf{X}, \tau, \mathbf{I})$ is called $\delta_{\mathbf{I}}$ -s-o cover of a subset **B** of **X** if $\mathbf{B} \subseteq \bigcup \{A_{\alpha} | \alpha \in \Lambda\}$ holds.

Definition 5.2. An ideal topological space (X, τ, I) is said to be δ_I -semi-compact { simply written as δ_I -s-com } if every δ_I -s-o cover of X has a finite subcover.

Definition 5.3. A subset B of an ideal topological space (X, τ, I) is called δ_I -s-com relative to X if for every collection $\{A_{\alpha} | \alpha \in \Lambda\}$ of δ_I -s-o subsets of X such that $B \subseteq \bigcup \{A_{\alpha} | \alpha \in \Lambda\}$, there exists a finite subset Λ_o of Λ such that $B \subseteq \bigcup \{A_{\alpha} | \alpha \in \Lambda_o\}$

Proposition 5.4. A $\delta_{\mathbf{I}}$ -s-cl subset of a $\delta_{\mathbf{I}}$ -s-com space $(\mathbf{X}, \tau, \mathbf{I})$ is $\delta_{\mathbf{I}}$ -s-com relative to $(\mathbf{X}, \tau, \mathbf{I})$.

Proof: Let A be any $\delta_{\mathbf{I}}$ -s-cl subset of an ideal topological space $(\mathbf{X}, \tau, \mathbf{I})$. Then A^c is

 $\delta_{\mathbf{I}}$ -s-0 in $(\mathbf{X}, \tau, \mathbf{I})$. Let $\mathbf{S} = \{\mathbf{A}_i | i \in \Lambda\}$ be a $\delta_{\mathbf{I}}$ -s-0 cover of \mathbf{A} . Then $\mathbf{S}^* = \mathbf{S} \cup \mathbf{A}^c$ is a $\delta_{\mathbf{I}}$ -s-0 cover of \mathbf{X} . That is $\mathbf{X} = (\bigcup_{i \in \Lambda} \mathbf{A}_i) \cup \mathbf{A}^c$. By assumption \mathbf{X} is δ -s-com and hence \mathbf{S}^* is reducible

to a finite subcover of X say $X = A_{i_1} \cup A_{i_2} \cup ... \cup A_{i_n} \cup A^c$ where $A_{i_k} \in S^*$. But A and A^c are disjoint. Hence $A \subseteq A_{i_1} \cup A_{i_2} \cup ... \cup A_{i_n} \in S$. Thus $\delta_{\mathbf{I}}$ -s-o cover S of A contains a finite

subcover. Hence A is $\delta_{\mathbf{I}}$ -s-com relative to X.

Proposition 5.5. If a map $f : (X, \tau, I) \to (Y, \sigma, J)$ is δ_I -s-irresolute and a subset B of X is δ_I -s-com relative to X, then f(B) is δ -s-com relative to Y.

Proof: Let $\{A_{\alpha}|\alpha \in \Lambda\}$ be a collection of δ -s-o sets in Y such that $f(B) \subseteq \bigcup_{\alpha \in \Lambda} A_{\alpha}$. Then $B \subseteq \bigcup_{\alpha} f^{-1}(A_{\alpha})$, where $\{f^{-1}(A_{\alpha})|\alpha \in \Lambda\}$ is a δ -s-o set in X. Since B is $\delta_{\mathbf{I}}$ -s-com relative to X, there exists finite subcollection $\{f^{-1}(A_1), f^{-1}(A_2), ..., f^{-1}(A_n)\}$ such that $B \subseteq \bigcup_{\alpha=1}^{n} f^{-1}(A_{\alpha})$. That is $f(B) \subseteq \bigcup_{\alpha=1}^{n} A_{\alpha}$. Hence f(B) is δ -s-com relative to Y.

Proposition 5.6. Every finite union of $\delta_{\mathbf{I}}$ -s-com sets is $\delta_{\mathbf{I}}$ -s-com. **Proof.** Let U and V be any $\delta_{\mathbf{I}}$ -s-com subsets of $(\mathbf{X}, \tau, \mathbf{I})$. Let F be a $\delta_{\mathbf{I}}$ -s-o cover of U UV. Then F will also be a $\delta_{\mathbf{I}}$ -s-o cover of both U and V. By assumption, there exists a finite subcollection of F of $\delta_{\mathbf{I}}$ -s-o sets, say $\{U_1, U_2, ..., U_n\}$ and $\{V_1, V_2, ..., V_n\}$ covering U and V respectively. Then the collection $\{U_1, U_2, ..., U_n, V_1, V_2, ..., V_n\}$ is a finite collection of $\delta_{\mathbf{I}}$ -s-o sets covering U UV. By induction, every finite union of $\delta_{\mathbf{I}}$ -s-com sets is $\delta_{\mathbf{I}}$ -s-com. **Proposition 5.7.** Let A be a $\delta_{\mathbf{I}}$ -s-com subset of a space $(\mathbf{X}, \tau, \mathbf{I})$ and B be a $\delta_{\mathbf{I}}$ -s-cl subset of X. Then A \cap B is $\delta_{\mathbf{I}}$ -s-com in X.

Proof. Let $\{G_{\alpha}\}$ be a $\delta_{\mathbf{I}}$ -s-o cover of $A \cap B$. Since B is $\delta_{\mathbf{I}}$ -s-cl, $\{G_{\alpha}, B^{c}\}$ is $\delta_{\mathbf{I}}$ -s-o. Then $\{G_{\alpha}, B^{c}\}$ is a $\delta_{\mathbf{I}}$ -s-o cover of A. By assumption A is $\delta_{\mathbf{I}}$ -s-com, there exists a finite subcollection, say, $\{G_{k}, B^{c}\}$. Then $\{G_{k}\}$ is a finite $\delta_{\mathbf{I}}$ -s-o subcover of $A \cap B$. Thus $A \cap B$ is $\delta_{\mathbf{I}}$ -s-com in X.

Theorem 5.8. An ideal topological space (X, τ, I) is δ_I -s-com if and only if every family of δ_I -s-cl subsets of X having finite intersection property has a non-empty intersection.

Proof. Suppose $(\mathbf{X}, \tau, \mathbf{I})$ is $\delta_{\mathbf{I}}$ -s-com. Let $\{A_{\alpha} | \alpha \in \Lambda\}$ be a family of $\delta_{\mathbf{I}}$ -s-cl sets with finite intersection property, Suppose $\bigcap_{\alpha \in \Lambda} \{A_{\alpha}\} = \emptyset$. Then $[\bigcap_{\alpha \in \Lambda} \{A_{\alpha}\}]^c = \mathbf{X}$. This implies $\bigcup_{\alpha \in \Lambda} \{A_{\alpha}^c\} = \mathbf{X}$. Thus the cover $\{A_{\alpha}^c | \alpha \in \Lambda\}$ is a $\delta_{\mathbf{I}}$ -s- α cover of $(\mathbf{X}, \tau, \mathbf{I})$. Then by assumption, the $\delta_{\mathbf{I}}$ -s- α cover $\{A_{\alpha}^c | \alpha \in \Lambda\}$ has a finite subcover, say $\{A_{\alpha}^c | \alpha = 1, 2, ..., n\}$. This implies $\mathbf{X} = \bigcup_{\alpha=1}^n \{A_{\alpha}^c\} = [\bigcap_{\alpha=1}^n \{A_{\alpha}\}]^c$ and so $\emptyset = \bigcap_{\alpha=1}^n \{A_{\alpha}\}$. This contradicts the assumption. Hence $\bigcap_{\alpha \in \Lambda} \{A_{\alpha}\} \neq \emptyset$.

Conversely, suppose (X, τ, \mathbf{I}) is not $\delta_{\mathbf{I}}$ -s-com. Then there exists a $\delta_{\mathbf{I}}$ -s-o cover of (X, τ, \mathbf{I}) say $\{G_{\alpha}|\alpha \in \Lambda\}$ having no finite subcover. This implies for any finite subfamily $\{G_{\alpha}|\alpha = 1, 2, ..., n\}$ of $\{G_{\alpha}|\alpha \in \Lambda\}$ we have $\bigcup_{\alpha=1}^{n} G_{\alpha} \neq X$. Now $\emptyset \neq [\bigcup_{\alpha=1}^{n} \{G_{\alpha}\}]^{c} = \bigcap_{\alpha=1}^{n} \{G_{\alpha}^{c}\}$. Then the family $\{G_{\alpha}^{c}|\alpha \in \Lambda\}$ of $\delta_{\mathbf{I}}$ -s-cl sets has a finite intersection property. Also by assumption $\{\bigcap_{\alpha \in \Lambda} G_{\alpha}^{c}\} \neq \emptyset$ and so $\bigcup_{\alpha} G_{\alpha} \neq X$. This implies $\{G_{\alpha}|\alpha \in \Lambda\}$ is not a $\delta_{\mathbf{I}}$ -s-cover of (X, τ, \mathbf{I}) . This contradicts the fact that $\{G_{\alpha}|\alpha \in \Lambda\}$ is a $\delta_{\mathbf{I}}$ -s-cover for (X, τ, \mathbf{I}) . Therefore $\delta_{\mathbf{I}}$ -s-cover $\{G_{\alpha}|\alpha \in \Lambda\}$ of X has a finite subcover $\{G_{\alpha}|\alpha = 1, 2, ..., n\}$. Hence (X, τ, \mathbf{I}) is $\delta_{\mathbf{I}}$ -s-com.

Corollary 5.9. An ideal topological space $(\mathbf{X}, \tau, \mathbf{I})$ is $\delta_{\mathbf{I}}$ -s-com if and only if every family of $\delta_{\mathbf{I}}$ -s-cl sets of \mathbf{X} with empty intersection has a finite sub-family with empty intersection. **Proposition 5.10.** The image of a $\delta_{\mathbf{I}}$ -s-com space under $\delta_{\mathbf{I}}$ -s-irresolute surjective function is δ -s-com.

Proof. Let $\mathbf{f}: (\mathbf{X}, \tau, \mathbf{I}) \to (\mathbf{Y}, \sigma, \mathbf{I})$ is a $\delta_{\mathbf{I}}$ -s-irresolute function from $\delta_{\mathbf{I}}$ -s-com space $(\mathbf{X}, \tau, \mathbf{I})$ onto an ideal topological space $(\mathbf{Y}, \sigma, \mathbf{I})$. Let $\{\mathbf{A}_{\alpha} | \alpha \in \Lambda\}$ be a δ -s-o cover of \mathbf{Y} . Then $\{\mathbf{f}^{-1}(\mathbf{A}_{\alpha}) | \alpha \in \Lambda\}$ is a $\delta_{\mathbf{I}}$ -s-o cover of \mathbf{X} , since \mathbf{f} is $\delta_{\mathbf{I}}$ -s-irresolute. As \mathbf{X} is $\delta_{\mathbf{I}}$ -s-com, $\delta_{\mathbf{I}}$ -s-o cover $\{\mathbf{f}^{-1}(\mathbf{A}_{\alpha}) | \alpha \in \Lambda\}$ of \mathbf{X} has a finite subcover, say, $\{\mathbf{f}^{-1}(\mathbf{A}_{\alpha}) | \alpha = 1, 2, ..., n\}$. Therefore $\mathbf{X} = \bigcup_{\alpha=1}^{n} \{\mathbf{f}^{-1}(\mathbf{A}_{\alpha}) | \alpha = 1, 2, ..., n\}$. Thus $\{\mathbf{A}_{1}, \mathbf{A}_{2}, ..., \mathbf{A}_{n}\}$ is a finite subcover for \mathbf{Y} . Hence \mathbf{Y} is δ -s-com.

Definition 5.11. An ideal toplogical space $(\mathbf{X}, \tau, \mathbf{I})$ is called locally $\delta_{\mathbf{I}}$ -s-com if every point in **X** has atleast one $\delta_{\mathbf{I}}$ -s-neighborhood whose closure is $\delta_{\mathbf{I}}$ -s-com.

Proposition 5.12. Every $\delta_{\mathbf{I}}$ -s-com space is locally $\delta_{\mathbf{I}}$ -s-com.

Proof. Let (X, τ, I) be a δ_I -s-com space. Let $x \in X$. Then X is a δ_I -s-neighborhood of x

such that cl(X) = X is δ_I -s-com. Hence X is locally δ_I -s-com.

References:-

- 1. A. Anis Fathima, V. Inthumathi and M.Maheswari, Weaker form of δ -open sets via ideals, International Journal of Mathematics and its Applications, 4 (1 -B)(2016), 29 35.
- 2. F. G. Arenas, J. Dontchev, M. L. Puertas, Idealization of some weak separation axioms. Acta Math. Hungar. 89 (1-2) (2000), 47-53.
- 3. J. Dontchev, M. Ganster, D. Rose, Ideal resolvability. Topology and its Appl. 93 (1999), 1-16.
- 4. E. Ekici and T. Noiri, Connectedness in ideal topological spaces, Novi Sad J. Math. 38(2008),65-70.
- 5. V. Inthumathi, M. Maheswari and A. Anis Fathima, On $\delta_{\mathbf{I}}$ -semi-continuous function in ideal topological spaces, Journal of Xidian University.,15(10)(2021),174-183.
- 6. A. Anis Fathima, M.Maheswari and V. Inthumathi, Contra $\delta_{\mathbf{I}}$ -semi-continuous functions in ideal topological spaces.(submitted)
- 7. D. Jankovic, T. R. Hamlett, New topologies from old via ideals. Amer. Math. Monthly 97(1990), 295-310.
- 8. K. Kuratowski, Topology, Vol. I, Academic Press, New York, (1966).
- 9. M. N. Mukherjee, R. Bishwambhar, R. Sen, On extension of topological spaces in terms of ideals. Topology and its Appl. 154 (2007), 3167-3172.
- A. Nasef, R. A. Mahmoud, Some applications via fuzzy ideals. Chaos, Solitons and Fractals, 13 (2002), 825-831.
- 11. M. Navaneethakrishnan, J. Paulraj Joseph, g-closed sets in ideal topological spaces. Acta Math. Hungar. DOI: 10.107/s10474-007-7050-1
- 12. R. Vaidyanathaswamy, The localisation theory in set topology, Proc. Indian Acad. Sci., 20(1945), 51-61.