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Introduction:-

The notion of ideal in topological spaces was studied by Kuratowski [8] & Vaidyanathaswamy [12].
Applications to various fields in ideal topological spaces were investigated by Jankovic and Hamlett [7],
Dontchev et al. [3], Mukherjee et al. [9], Arenas et al. [2], Navaneethakrishnan et al. [11], Nasef and
Mahmoud [10], etc. In 2008, Ekici and Noiri [4] introduced the notion of connectedness in ideal topological
spaces.

Preliminaries
Throughout this paper, (X, 1, ) and (Y, o, I) (or simply X and Y), always mean ideal topological spaces
on which no separation axioms are assumed.

Definition 2.1. [1] A subset A of an ideal topological space (>X,t, 1) issaid tobed, -s-o0 if
A < cl*(ints(A)). The complementof &, -s-0 set is called &, -s-cl set.

Definition 2.2. [1] Let A be a subset of an ideal topological space (X,t,1) and x be a point of X. Then

1. x is called a &, -s-clu point of A if AnU =0 for every U €5, SO(X),
2. the family of all §, -s-clu points of A is called &, -s-clo of A and is denoted by scl;, (A).

Definition 2.3. [5] A function £ : (OX,t,1) — (Y,0c, 1) is said to be &, -s- irresolute if inverse
image of every &y -s-0 set in Y is &, -s-0 set in X,

Definition 2.4. [6] A function f : (3X,1,1) — (Y, o) is said to be contra §, -s-continuous if (V)
is 8y -s-cl in XX for each open set V of Y.
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8y -semi-separated
Definition 3.1. Let (X, t, I) be an ideal topological space. Two non-empty subsets M and N are said

to be 6y -semi-separated{simply writtenas &, -s-sep}ifandonly if M nscl;, (N)= 0and scls, (M) "N = 0.
i.e., [M nscls, (N)]u[scls, (M) nN] = 0.

Definition 3.2. If X = M UN such that M and N are non-empty &, -s-sep sets in (>X, t, I) then
M, N form a &, -s-separation of X.

Example 3.3. Let X ={a, b, c,d} with topology t = {0, {a}, {b,d}, {a,h,d}, XFand I ={0, {a}}.
ConsiderP ={a}, Q=4{b} and R={d}. Then the sets P and Q are &, -s-sep but the sets Q and
R are not 9, -s-sep.

Definition 3.4. A point x € X is said to be an &, -s-adherent point of a subset A of an ideal
topological space (>X,t, 1) if every §, -s-0 set containing X, containsatleastone point of A.

Remark 3.5. Two 9§, -s-sep sets are always disjoint. But two disjoint sets need not be &, -s-sep. In
Example 3.3, the sets Q and R are disjoint but not &, -s-sep.

Theorem 3.6. Two sets are 9, -s-sep if and only if they are disjoint and neither of them contains 6, -s-clu
point of the other.

Proof. Let A and B be &, -s-sep. Now, Anscl;, (B) = 0 & An (B UB;) = 0, where the set

B, denotes the set of all &, -s-clu points of B & A and B are disjoint and A containsno &y -s-clu
point of B. Similaly, scls, (A) nB =0 if and only if A and B are disjoint and B contains no & -s-

clu point of A.
Theorem 3.7. Subsets of §; -s-sep sets are §, -S-sep.

Proof. Let C and D be subsets of two 5 -s-sep sets A and B respectively. Then A n scls, (B)=0 and
scls, (A)nB = (. Then we have C nscl;, (D) € Anscly, (B) = 0 and scl;, (C)nD
cscls, (A)NnB = 0. ThusC and D are §, -s-sep.

Theorem 3.8. Two §, -s-cl subsets of XX are 6§, -s-sep if and only if they are disjoint.
Proof. By Remark 3.5 9, -s-cl separated sets are disjoint.
Conversely, let A and B be two §, -s-cl disjoint sets. Then we have scl;, (A) = A, scl;, (B) =B and

ANnB = {. Consequently, A nscls, (B)=0 and scl;, (A) N B = . Hence A and B are §; -s-sep.

Theorem 3.9. Two §, -s-0 subsets of XX are §, -s-sep if and only if they are disjoint.
Proof. By Remark 3.5 §, -s-0 separated sets are disjoint.

Conversely, let P and Q be two 9§y -s-0 disjoint sets. Suppose that P n scl;, (Q) = ¢and let

xePnscl;, (Q). Then x €P and X is a &, -s-adherent point of Q. Since P is a §; -s-0 set containing
X and X is a §y -s-adherent point of Q, therefore P must contain atleast one point of Q. Thus we have P n
Q = 0 which is a contradicton. Therefore P nscls, (Q) = 0. Similarly, scl;, (P) N Q = @. Hence Pand Q
are oy -s-sep.

Theorem 3.10. If the union of two &, -s-sep sets is a &, -s-cl set then the individual sets are &, -s-
clo of themselves.

Proof. Let M and N be two &, -s-sep sets such that MU N is §, -s-cl. Now, MUN = scl;, (M
UN) 2scls, (M) uscls, (B). Therefore scl;, (M) = scl;, (M) n[scls, (M) Uscls, (N)] < scl;, (M)
N[M UN] = M. Thuswe have scl;, (M) = M. Similarly, scl;, (M) = M.

Theorem 3.11. If the union of two §, -s-sep sets is & -open, then the individual sets are §, -s-0.

Proof. Let M and N be two 9, -s-sep sets such that M U N is 9§ -open. Therefore we have

M UN n [scl;, (N )¢ is &y -s-0and so M UN n [scls, (N )I° = M. This implies M is §, -s-0.
Similarly, we can prove N is §y -s-0.

4y -semi-connected

Definition 4.1. A space (>X,t, 1) 1is §;-s-con if and only if XX has no &, -s-separation.
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If X is not §, -s-con then it is §, -s-discon.
Definition 4.2. A subset of (3X,t, 1) is &, -s-con if it is &; -s-con as a subspace.

Theorem 4.3. An ideal topological space (3X,t, 1) is 9, -s-discon if and only if there exist a non-empty
proper subset of X which is both §, -s-0 and &, -s-cl.

Proof. Necessity: Let (X, 1, 1) be §,-s-discon. Then there exist non-empty &, -s-sep subsets M
and N of X such that M UN = X. Therefore scl;, (M) UN =X, Muscl;, (N) =X and

M NN = 0. Thuswe have M = X -N, M = X -scl;, (N) and N = X —scl;, (M). This
shows that, M is non-empty proper subset of X which is both §, -s-0 and &, -s-cl.

Sufficiency: Let M be a non-empty proper subset of X which is both &, -s-0 and 3§, -s-cl.

Then, M€ is a non-empty proper subset of X which is both §; -s-cl and §; -s-0. Thus M NM° = ¢,
scl;, (M)=Mand scl;, (M°)=M°®and therefore scl;, (M) NM® =M NnM°= Jand M nscl;, (M°)

=MNM®=0. Also X= M UMF°. Hence X is §, -s-discon.

Theorem 4.4. An ideal topological space (3X,t, l) is &, -s-discon if and only if X is the union of non-
empty disjoint &, -s-0 sets.

Proof. Necessity: Let X be §, -s-discon. Then there exista non-empty proper subset M of X which is
both &, -s-0 and &, -s-cl. Therefore M® is a non-empty proper subset of X which is both &, -s-0 and &, -s-
cl. This shows that X =M UM®and M nM® = §. This implies that > is the union of two non-empty
disjoint 8y -s-0 sets.

Sufficiency: Let XX be the union of two non-empty disjoint §, -s-0 sets M and N. Then N° =M. Now
N is 8 -s-0, it follows that M is &, -s-cl. Since N= {, it implies that M is a non-empty proper subset of XX
which is both §, -s-0 and 3, -s-cl. This shows that X is §, -s-discon.

Theorem 4.5. An ideal topological space (X, t, 1) is &, -s-con if and only if >< cannot be written as the
union of non-empty disjoint &, -s-0 sets.
Proof. Obvious.

Corollary 4.6. A space (>X, 1, 1) is 9y -s-con (resp. &, -s-discon) if and only if >< cannot be written as
(resp. can be written as) the union of non-empty disjoint &, -s-cl sets.

Theorem 4.7. An ideal topological space (X, t, 1) is &, -s-con if and only if the only subsets of X
which is §; -s-0 and &, -s-cl are ¢ and X.

Proof. LetF bea &, -s-0 and 9, -s-cl subset of X. Then X —F is both §, -s-0 and &, -s-cl. Since X
is &y -s-con, X can not be expressed as union of two disjoint non empty &, -s-0 sets F and X —F, which
implies X —F is empty.

Conversely, suppose X = U UV where U and V are disjoint non-empty &, -s-0 sets of >X. Then U is both
0y -s-0 and &, -s-cl. Therefore by assumption, either U = § or ><X, which contradicts the assumption that U
and V are disjoint non-empty &, -s-0 subsets of >X. Therefore XX is§, -s-con.

Corollary 4.8. If f: (X,t,1)— (Y,0,3) isa §, -s-irresolute surjective function and X is
8y -s-con, then Y is & -s-con.

Theorem 4.9. IfthesetsP and Q forma §, -s-separation of (X, 7, 1)and if (Y,oc, 1) is
dy -s-con subspace of XX, then Y lies entirely within either P or Q.

Proof. Since P and Q form a §, -s-separation of X. If P nY and QNY were both non-empty, they would
form a &, -s-separation of Y, which is a contradiction. Therefore one of them is empty. Hence Y must lie
entirely in P or in Q.

Theorem 4.10. A contra §, -s-continuous image ofa , -s-conspace is connected.
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Proof. Let : (23X, 1, 1) —(Y, 6) be acontra §, -s-continuous function of a &, -s-con space (X, t, I) onto a
topological space (Y, o). Suppose Y is disconnected. Let A and B form a separationof Y. Then A and B

are clopen and Y =A U B where A n B = 0. Since f is contra §, -s-continuous, X = f (Y ) = f (AU
B) = £ !(A) u f'(B),where £ '(A) and £ (B) are non-empty §, -s-0 sets in X. Also f (A) nf(B)
= (. Hence X is not §, -s-con. This is a contradiction. Therefore Y is connected.

Theorem 4.11. If A is §, -s-conand A < B Cscl;, (A), then B is §y -s-con.

Proof. Let A be §; -s-conand let A < B < scls, (A). Suppose that B is not &, -s-con, then C and D
form a &, -s-seperation of B. By Theorem 4.9, A must lie entirely in C or in D. Suppose that A € C
implies scl;, (A) ND < scl;, (C)nD =70. Also, D € B cscl;, (A) implies

scls, (A) ND = D. ThisshowsthatD = 0, which is a contradiction. Similarly, we will have a contradiction
for A € D. Therefore Bis §, -s-con.

Corollary 4.12. The §; -s-cloof a §; -s-con set is &, -s-con.

Theorem 4.13. If every two points of a set E are contained in some §, -s-con subset of E, then E is

dy -S-con.

Proof. Suppose that E is not §; -s-con. Then, E is the union of non-empty disjoint &, -s- sep sets A and B.
Since A and B are non-empty disjoint sets, let a € A and b € B and a,b are two distinct points of E. By
hypothesis, there exists a §, -s-con subset C of E such that a, b € C. By Theorem 4.9, we have C< A or C
C B. This is not possible, since A and B are disjoint and C contains atleast one point of A and one that of B.
Thus a contradiction. Hence E is §, -s-con.

Theorem 4.14. The union of any family of §, -s-con sets having a non-empty intersection is §, -s-con.
Proof. Let {E,}be any family of &, -s-con sets such that N, E, = 0.Let E = U, E.

Suppose that E is not §, -s-con, then A and B constitute a §, -s-seperation of E. Since N, E, #0,
let x en, E,. Then x belongs to each E, and so x € E. Consequently, x € A or x € B. Suppose

that x € A, E, n A==0 for every a. From Theorem 4.9, E, € A or E, < B. Since A and B are disjoint
and E, N A =0 for every o . We must have E, € A for each a. Consequently, U, E, € A or E C A.

This shows that B = @, which is a contradiction. Hence E is §, -s-con.

Corollary 4.15. Let{E,Joa € A} be a family of &, -s-con subsets of (X, t, 1) such that one of the
members of this family intersects every other member. Then U{E,|ja € A} is §, -s-con.

Proof. Let E, be a member of the given family such that E,, N E,#@ for every a € A. Then By
Theorem 4.14, C,= E, U E,is &, -s-con for each a. Now, U{C,lo € AF=U{ E, U Ela € A}

= Eo, U (U{Eda € A}) = U{Eya € A}and N{C,la € A}= N{E,UE 0 € A}=

E U(N{EJo € A})# 0. Thus U{Cqlo € AFis the union of &y -s-con sets having a non-empty
intersection is &, -s-con. Therefore U{EJoa € A}is §, -s-con.

8y -semi-compact

Definition 5.1. A collection {A4a € A} of 3, -s-0 sets in an ideal topological space (X, 1, 1)
is called &y -s-0 cover of a subset B of X if B cU{A,Ja € A} holds.

Definition 5.2. An ideal topological space (3X,t, 1) is said to be &, -semi-compact{simply written as 6, -
s-com} if every 9, -s-0 cover of XX has a finite subcover.

Definition 5.3. A subset B of an ideal topological space (>X, t, I) is called &, -s-com relative to XX if for
every collection {A,la € A} of §; -s-0 subsets of X such that B € U{ Ao € A}, there exists a finite
subset A, of A such that B CU{ Ao € Ao}

Proposition 5.4. A §, -s-cl subset of a &, -s-com space (X, t, 1) is §; -s-com relative to (X, <, I).
Proof: Let A be any §, -s-cl subset of an ideal topological space (3X,t, 1) . Then A®is

Sy -s0in (XX, 1, ). Let S= {A;|i € A}be a &, -s-0 cover of A. Then S*=S UACisa §, -s-0 cover of X.
That is X = (Uj;eaAj) UA°. By assumption X is 8 -s-com and hence S+ is reducible

to a finite subcover of X say X =A; UA;, U..UA; UA® where A; €S+ But A and A are

disjoint. Hence A CA; UA;, U..UA; €S. Thus §, -s-0 cover S of A contains a finite

261



ISSN: 2320-5407 Int. J. Adv. Res. 12(12), 258-263

subcover. Hence A is §; -s-com relative to X.

Proposition 5.5. Ifamap f:(X,t,1) —>(Y,05,3J) is &, -s-irresolute and a subset B of
X isdy -s-com relative to XX, then ¥(B) is §-s-com relative to Y.

Proof: Let {Alo € A} be a collection of § -s-0 sets in Y such that f(B) SUgeA Ao Then

B € Uy f1(AL), where {f~1(A,)|a € A}isa § -s-0 set in X. Since B is §, -s-com relative
to X, there exists finite subcollection {f*(A,), f '(A,), ..., £ *(An)} such that

B cUl_, f~1(A,). That is f(B) cU%_; A,. Hence £(B) is & -s-com relative to Y.

Proposition 5.6. Every finite union of §; -s-com sets is &, -s-com.

Proof. Let U and V be any §, -s-com subsets of (X, t, I). Let F be ad, -s-0 cover of U U V.

Then F will also be a &, -s-0 cover of both U and V. By assumption, there exists a

finite subcollection of F of §; -s-0 sets, say {U;, Uy, ..., U} and LV, V,, ...,V } covering U

and V respectively. Then the collection {Uy, Uy, ..., U, V1, Vs, ...,V } is a finite collection of

0y -s-0 sets covering U UV. BY induction, every finite union of &y -s-com sets is 9, -s-com.
Proposition 5.7. Let A be a 9, -s-com subset of a space (>X,t,1) and B be a &, -s-cl subset of
X. Then ANB is §;-s-comin X.

Proof. Let{G,}bea §, -s-0 cover of A N B. Since B is §; -s-cl,{G,, B} is §; -s-0. Then {G,, B }isa
5y -s-0 cover of A. By assumption A is §, -s-com, there exists a finite subcollection, say, {Gy, B°}. Then
{G}is a finite 6y -s-0 subcover of AN B. Thus ANB isd; -s-com in X,

Theorem 5.8. An ideal topological space (X, 7, 1) is dy -s-com if and only if every family of §, -s-cl
subsets of ><X having finite intersection property has a non-empty intersection.

Proof. Suppose (X, t, 1) is &y -s-com. Let{A,|a€ A}bea family of &, -s-cl sets with finite

intersection property, Suppose Ngepa{Ag) = @. Then [NgeafAy )] = X. This implies U,ea{AS} = X.
Thus the cover {AS |a € A} is ady-s-0 cover of (X, t, I). Then by assumption,the §,-s-0 cover {AS|a € A}
has a finite subcover, say {AS|a = 1,2, ...n}. This implies X = UL_; {AS} = [N5_,{A}]¢and so @ =
N&-1{A.}. This contradicts the assumption. Hence Nqep{Aq} # 0.

Conversely, suppose (X, t, 1) isnot §, -s-com. Then there existsa 6y -s-o cover of (X, 1, 1) say
{G4o € A} having no finite subcover. This implies for any finite subfamily {G,a =1, 2, ..., n} of

{Gya € A} wehave Ui_; G, # X. Now @ # [U%_1{G}]¢ = Ni—; {GS}. Then the family {GS|a € A} of
3y -s-cl sets has a finite intersection property. Also by assumption {N, ¢ 2G5} # @ and so U, G, # X. This
implies {G,Jo € A}is not a §; -S-cover of (X, t, 1). This contradicts the fact that {G,jo € A}is ady -s-
cover for (X, 1, ). Therefore &, -s-0 cover {G,a € A} of X has a finite subcover {G,Ja=1, 2, ..., n}.
Hence (X, 7, 1) is 6, -s-com.

Corollary 5.9. An ideal topological space (3X, T, I) is &, -s-com if and only if every family of
3y -s-cl sets of X with empty intersection has a finite sub-family with empty intersection.
Proposition 5.10. The image ofa §, -s-com space under §, -s-irresolute surjective function is

o -s-com.

Proof. Let f: (X, t,1) > (Y,o,1) isa 9, -s-irresolute function from &, -s-com space
(>X,t, 1) onto an ideal topological space (Y,o,1). Let {Ay o€ A}be a §-s-0 cover of Y.
Then {f~1 (A D |a € A} isad, -s-0 cover of X, since F is §, -s-irresolute. As X is &, -s-com,
5y -s-0 cover {f~1 (A D |a € A} of X has a finite subcover, say, {f~1 (A D) |a=1,2,..,n}.
Therefore X = UL {f~1(A)|a=1,2,...,n}. Thus {A;, A,, ..A,} isafinite subcover for V.
Hence Y is & -s-com.

Definition 5.11. An ideal toplogical space (3, t, 1) is called locally §, -s-com if every point in
X has atleast one &y -s-neighborhood whose closure is &, -s-com.

Proposition 5.12. Every §, -s-com space is locally §, -s-com.

Proof. Let (X, 1, 1) be ad, -s-comspace. Let X € X. Then X isad, -s-neighborhood of x
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such that cl(><) = X is §; -s-com. Hence X is locally &, -s-com.
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