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In this paper, two new compounds, (𝐶6𝐻20𝑁3)2[𝑀𝑜7𝑂24].3𝐻2𝑂 (1) 

and(𝐶6𝐻14𝑁)6[𝑀𝑜7𝑂24].𝐶𝐻4𝑂. 5.5𝐻2𝑂  (2), have been synthesized 

by a one pot process at the reflux condition. Both compounds were 

characterized by infrared and UV-visible spectroscopy techniques, as 

well as by X-ray diffraction. The compound (1) crystallizes in the 

monoclinic system with the space group P21/n and the compound (2) 

crystallizes in the monoclinic system but with the space group P21/c. 

The structure consists of a non-protonated heptamolybdates polyanions, 

stabilized by organoammonium groups and water molecules. The 

cohesion of the three-dimensional structure is ensured by hydrogen 

bonds between the polyanions, the organoammonium groups, and the 

water molecules, thereby providing significant stability to the 

compound. 
 

Copyright, IJAR, 2024,. All rights reserved. 

…………………………………………………………………………………………………….... 

Introduction:- 
Polyoxometalates (POMs) are nanoclusters composed of transition metals with high oxidation states.

1
They are an 

exceptional brand of coordination compounds with wide range and precise composition and architecture. POMs 

have been demonstrated to possess unique redox, catalytic, magnetic, optical and bioactive properties and exhibit 

potential in multidisciplinary materials.
2–9

 

 

In particular, the isopolyoxometalates (IPOMs) exhibit excellent electrochemical properties.
10–15

The design of 

POMs functionalized with organic groups, via a controllable synthesis, leads to crystallized hybrid architectures 

gained much attention because the combination of organic and inorganic components which provide new multi-

functional hybrid materials 
16–18

 

 

Amongisopolyoxometalates, there are organic-inorganic hybrid heptamolybdates with a general formula of 

(CxHyNz)6-t[HtMo7O24].  
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These compounds characterized by the assembling POMs with organoammonium cationsleads to crystallized hybrid 

architectures in which the organic-inorganic interface is established via hydrogen bonding networks, this synergy 

effect leads to unique properties.  

 

In this paper, we will focus on structural description and electrochemical propertiestwo new organic-inorganic 

hybrid heptamolybdates(𝐶6𝐻20𝑁3)2[𝑀𝑜7𝑂24].3𝐻2𝑂 and(𝐶6𝐻14𝑁)6[𝑀𝑜7𝑂24].𝐶𝐻4𝑂. 5.5𝐻2𝑂 . 

 

Experimental section 

Synthesis 

Ammonium molybdate (NH4)6[Mo7O24].4H2O (99%), 3,3’-iminobispropylamine C6H17N3 (98%), hydrochloric acid 

HCl (37%), methanol (99%) and cyclohexylamine C6H13N (99%) were purchased from Sigma-Aldrich and used 

without further purification. 

 

Both compounds were obtained using one pot synthesis process.  

 

The compound (C6H20N3)2[Mo7O24]·3H2O (1) was obtained by mixing, in 40 mL of water, 5mmol (0,980 g ) of 

ammonium molybdate and 5 mmol (0,676 g ) of 3,3’-iminobispropylamine. 

 

The compound (C6H14N)6[Mo7O24]·CH4O·5.5H2O (2) was obtained by mixing 5 mmol (0,501 g) of ammonium 

molybdate and 5 mmol (0,676 g ) of cyclohexylaminein 40 mL of solvent composed of 30 mL of water and 10 mL 

of methanol, 

 

The pH of both solutions was adjusted to 6.5 with the addition of hydrochloric acid. The solutions were stirred for 

two hours and colorless crystals suitable for X-ray diffraction were obtained after slow evaporation. 

 

X-ray diffraction 

For compound (1), single-crystal X-ray diffraction data were collected with a Bruker-Nonius Kappa CCD 

diffractometer (MoKa radiation k = 0.71073 Å). The crystal to detector distance was 60 mm. Absorption corrections 

were considered using SADABS. 
19

The determination was carried out using direct methods 

 

For compound (2), single-crystal X-ray diffraction data were measured on a CrysAlis PRO (Rigaku Oxford 

Diffraction, 2021) diffractometer (CuKα radiation, λ = 1.54184Å). Data collection reduction and multi-scan 

ABSPACK correction were performed with CrysAlisPro (Rigaku Oxford Diffraction). The crystal including the 

anisotropic displacement parameters were refined with SHELXT-2013. 
20–25

Crystallographic Information Files were 

compiled with Olex2.12or Crystals 15.4.1.Crystallographic data are summarized in table 1. 

 

Table 1:- Crystal data and structure refinement for compounds (1) and (2). 

Compounds (1) (2) 

Molecular formula (C6H20N3)2[Mo7O24]·3H2O (C6H14N)6[Mo7O24]·CH4O·5.5(H2O) 

Formula weight (g.mol
-1

) 1378.13 1787.80 

Crystal color, habit Block, colorless Block, colorless 

Crystal system Monoclinic Monoclinic 

a(Å) 8.8353 (3) 10.3263 (1) 

b(Å) 20.6069 (5) 32.4556 (5) 

c(Å) 19.2323 (6) 19.1711 (3) 

α(deg) 90 90 

β(deg) 91.9700 (10) 90.130 (1) 

γ(deg) 90 90 

V(Å
3
) 3499.52 (18) 6425.11 (15) 

Space group P21/n P21/c 

Radiation type MoKα Cu Kα 

Crystal size (mm) 0.350× 0.263 × 0.238 0.25 × 0.15 × 0.10 

Tmin, Tmax 0.49/ 0.58 0.11/0.31 

Z 4 4 

F(000) 2680 3544 

θ range, deg 2.1–28.3 2.7–71.9 
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Absorption coefficient, mm
-1

 2.533 11.57 

T(K) 120 100 

λ(Å) 0.71073 1.54180 

Reflections collected 58746 68079 

Independent reflections 8687[Rint =0.355] 13709[Rint = 0.064] 

Final R indices, I > 2(I) R1 = 0.0197, wR2 = 0.0416 R1 = 0.059, wR2 = 0.134 

GOF on F
2
       1.093              1.019 

Peak, hole/eÅ
-3

 Δρmin = −0.587, Δρmax = 0.456 Δρmin = −2.08, Δρmax = 2.62 

 

Spectroscopy 

The UV-Visible absorption spectra were recorded using a Thermo Scientific GENESYS 10S UV-Vis 

spectrophotometer at room temperature in H2SO4 aqueous or distilled water solution. For all compounds, 15 mg was 

solubilized in 10 mL of sulfuric acid solution (2M) and distilled water for (1) and (2), respectively. A scan between 

200 nm and 1100 nm was carried out for each compound. Sulfuric acid /distilled water was used as blank.  

 

IR spectroscopy measurements were carried out for both compounds. IR measurements were performed using ATR 

(Attenuated Total Reflectance) method from 4000 to 400 cm
-1

.
26

 

 

Thermogravimetric measurements and Differential Scanning Calorimetry 

Thermogravimetric (TG) and Differential Scanning Calorimetry (DSC) measurements were carried out with a 

SetaramSensysEvo under Argon flow, from room temperature to 800 °C, with a heating rate of 5 °C/min. 

 

Electrochemical properties 

Electrochemical measurements were carried out using a DropSens𝜇Stat-I 400 as a potentiostat/galvanostat 

instrument. They were performed using three electrodes cell consisting of a glassy carbon electrode (0.07cm
2
 

surface area) as the working electrode, a reference electrode (Ag/AgCl, 1M KClsatured) and a platinum wire as the 

counter electrode. 

 

The electrochemical proprieties of compounds (1) and (2) were respectively investigated using 10 mL of aqueous 

acid medium (0.1 M H2SO4) and distilled water, with a scan rate of 25 mV/s.  

 

The electrochemical measurements with different scanning rates from 10 mV/s to 45 mV/s were also performed in 

the same conditions. 

 

Results and Discussion:- 
Structure description of (1) and (2) 

Compound(1) crystallizes in monoclinic system with the space group P21/n and the asymmetric unitconsists of one 

heptamolybdate anion, two 3,3’-iminobispropylammonium cations and three water molecules (Figure 1.a). Whereas 

the compound (2) crystallizes in monoclinic system with the space group P21/c and the asymmetric unitis composed 

of oneheptamolybdate polyanion, sixcyclohexylammonium cations, one molecule of methanol and five water 

molecules (Figure1.b). The polyhedral description of the heptamolybdate polyanion [Mo7O24]
6-

consists ofsix 

octahedra (MoO6) linked together by edge sharing. These six octahedra (MoO6)forms crown around a central 

Mo(VI) in an octahedral environment. 

 

Bond-valence sum calculations yield average for all Mo atoms to +6 and all O atoms are in the -2-oxidation state. 

We can distinguish four categories ofMo─O bonds in each polyanion: (a) Mo─Ot, (Ot = terminal oxygen) with bond 

lengths range of1.707(2)─1.737(2) Å for compound (1), and 1.701(5)─1.729(5) Å for compound (2); (b) Mo─(µ1-

O) ( µ1-O= oxygen atoms bridging two molybdenum atoms) with bond lengths range of 1.735(2)─2.543(2) Å for 

compound (1), and1.737(5)─2.522(5) Å for compound (2); (c) Mo─(µ2-O), ( µ2-O = oxygen atoms bridging three 

molybdenum atoms), with bond lengths between 1.894(2) to 2.287(2) Å for compound (1), and 1.883(4) to 2.283(5) 

Å for compound (2); (d) Mo─(µ3-O), ((µ3-O) = oxygen atoms bridging four molybdenum atoms) with bond lengths 

range of 2.135(2)─2.259(2) Å for compound (1), and 2.140(4)─2.294(4) Å for compound (2). All molybdenum 

atoms are linked to two terminal oxygen atoms except Mo4, which is located in the center of the polyanion (Figure. 

2.b).
27–31
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Figure 1:- Asymmetric units of (a) compound 1 and (b) compound 2. 

 

 
Figure 2:- Structures of the heptapolybdate polyanion. (a): polyhedral representation and (b): sticks representation 

with different types oxygen atoms. 

 

Incompound (1), polyanions,organoammoniums cations and water molecules interact with each other viastrong 

hydrogen bonds networks: Ow―H···O, N―H···Ow, and N―H···O.  

 

Water molecules act as hydrogen donors and hydrogen acceptors and have two types of hydrogen bonds. H2O 

(O00N) molecule combine with [Mo7O24]
6- 

anions through OW―H···O bonds and with organic counterions through 

N―H···Owinteractions. Meanwhile, the second organic cation forms a H-bond with heptamolybdatevia N―H···O 

interactions. The N―H···O interaction between the [Mo7O24]
6- 

anion and the C6H20N3
+
 cation results in the 

formation of a one-dimensional chain along the a-axis. This one-dimensional chain is connected by hydrogen bonds 

between cations, water molecules, and heptamolybdate units, forming a 3D network of alternating H2O, C6H20N3
3+ 

and [Mo7O24]
6- 

molecules (Figure.3).Similar compounds have been published in several papers. 

 

Table 2:- Selected hydrogen-bonding parameters (Å) for compounds 1 and 2. 

(C6H20N3)2[Mo7O24].3H2O(1) (C6H14N)6[Mo7O24].CH4O.5.5H2O (2) 

D─H
…

A d(D─H) d(H
…

A) d(D
…

A) D─H
…

A d(D─H) d(H
…

A) d(D
…

A) 

N8─H14
…

O00V 0.918 1.995 2.812 C9—H91···O7i 1.00 2.47 3.095 (15) 

N10─H41
…

O00B 0.76 2.079 2.806 C28—H282···O37i 0.97 2.50 3.433 (15) 

C01C─H177
…

O00O 0.979 2.565 3.428 C37—H371···O2 0.98 2.53 3.258 (15) 

C01D─H29
…

O00Q 0.98 2.485 3.141 C37—H371···O17 0.98 2.53 3.207 (15) 

O00N─H59
…

O00R 0.758 2.028 2.785 N29—H291···O35 0.90 1.97 2.864 (15) 

N9─H24
…

O00O 0.883 2.03 2.862 N1—H11···O31 0.88 2.02 2.891 (15) 

    N36—H363···O21 0.89 1.91 2.718 (15) 

    N8—H83···O23 0.89 2.34 3.173 (15) 
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    N29—H292···O19 0.89 1.95 2.829 (7) 

    N29—H293···O13ii 0.90 2.16 2.915 (7) 

    N8—H82···O1i 0.89 1.95 2.788 (15) 

    N1—H12···O9 0.89 1.97 2.836 (7) 

    N1—H13···O10iv 0.88 2.57 3.143 (7) 

    N1—H13···O12iv 0.88 2.02 2.876 (7) 

    N36—H361···O5 0.89 1.86 2.719 (15) 

    N15—H152···O18 0.89 2.31 2.995 (15) 

    N15—H152···O22 0.89 2.06 2.766 (15) 

    N15—H153···O2i 0.89 2.13 3.016 (15) 

    N15—H151···O11i 0.89 2.18 2.804 (15) 

    N15—H151···O36ii 0.89 2.24 2.968 (15) 

    N22—H222···O3i 0.89 2.14 2.781 (15) 

    N22—H221···O1i 0.90 2.31 3.097 (15) 

 

 
Figure 3:- Three-dimensional representation of compound (1). 

 

In compound 2, the constituents are involved in two varieties of hydrogen bonds namely, O─H
…

O and N─H
…

O. 

The [Mo7O24]
6–

 ions are bonded to organic cations through N─H···O hydrogen interactions leading the formation of 

a one-dimensional chain along the a-axis, on which C6H14N
+
 and [Mo7O24]

6–
molecules alternate (Figure 

4).Watermolecules O32 and O33 bind togetherthroughhydrogenbondstoformfour-

memberedringoligomers.Thelatterareplacedbetweenthechainsandensurethe formation of a three-dimensional 

structure.Similarcompounds in which 

watermoleculesformoligomersviahydrogenbondshavebeenreportedintheliterature.
32–35

 

 
Figure 4:- Three-dimensional representation of compound (2). 
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Spectroscopy 

The UV–Visible absorption of both compounds was analyzed in the range of 250–700 nm in acidic solution. In this 

region, only one single strongabsorption band is observed for both compounds. The UV spectra reveal precisely 

absorptions peaks at λmax equal 314 nm and 303 nm for compounds (1) and (2), respectively. This absorption band 

is attributed to Ligand-Metal Charge Transfer (LMCT) transition of the O→Mo(Figure 5). Indeed, during 

irradiation, electrons are promoted from low-energy electronic states, mainly composed of 2p oxygen orbitals, to the 

high-energy electron states, mainly made up of 4d metal orbitals of molybdenum. Then, both compounds absorb in 

the ultraviolet region. 

 
Figure 5:- Uv visible spectra:(a) for compound 1and (b) for compound 2. 

 

In the IR spectrum of compound 1 (Figure 6), the characteristic bands at 926, 908, 831, and 615 cm
-1

 are attributed 

to (Mo―Ot) and (Mo―(-O)) vibrations bands based on the polyanion [Mo7O24]
6-

 and the characteristic bands 

centeredat 1605, 1588, 1500, 1475, 1403, 1313, and 1261 cm
-1

 can be regarded as features symmetric/asymmetric 

absorption bands (N―H), (C―H) of the3,3’-iminobispropylammonium cations. 

 

The absorption band at 2988 cm
-1

 corresponds to ν(O–H) of water. In the IR spectrum of compound 2 (Figure. 4.SI), 

the characteristic bands at 922, 845, 610, and 558 cm
-1

 are attributed to (Mo―Ot) and (Mo―(-O)) vibrations 

bands based on the heptamolybdate polyanion [Mo7O24]
6-

structure and characteristic bands centered at2969, 2768, 

1417 to 1268 cm
-1

 can be regarded as features symmetric/asymmetric absorption bands (N―H), (C―H) of the 

cyclohexylammonium and methylamine.The O–H stretching bands of thewater of crystallization are observed at 

3360 cm
-1

.
36

 

 

TG and DSC analysis 

The thermal behaviours of the compounds were investigated by TGA–DSC analyses. The TGA and DSC curves for 

the obtained polyoxometalates have been shown in Figure 7. 

 

The TGA curve of the prepared compound 1(Figure 7a) show a weight loss of 3.5% (calculated3.92%) in the range 

of130–200 
◦
C. The corresponding DSC curve indicated an endothermic effect in this region.This weight loss could 

be assigned to the loss of tree water molecules. The next second weight loss of 19.7% (calculated 19.48%) between 

200–400
◦
C. In this range, the DSC cure show an exothermic peak. This weight loss is attributed to the degradation 

of the organic species, i.e. 3,3’-iminobispropylammonium groups in the hybrid material. The third weight loss is 

observed over 400°C with exothermic peaks showing in the DSC cure. This weight loss can be assigned to the 

decomposition of the polyanion in several steps according to the TGA curve and the DSC curve show several 

exothermic peaks. The total weight loss is 50%.  

 

For the compound 2, the TGA curve(Figure 7b) showsthe first weight loss of 2% (calculated 1,79%) between 25–

50°C. This weight loss is due to the elimination of methanol group. The second weight loss of 6% (calculated 

5.54%) between 50–130°C. This weight loss is due to the elimination of water molecules. In this range the DSC 

curve show an endothermic peak. The third weight loss of 31 % (calculated 33.6%) observed in the range of 130–

400°C can be attributed to the decomposition of six cyclohexylammonium groups. In this range, the DSC curve 

show an exothermic peak.  
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Figure 6:- IR spectra of compounds. 

 

The last weight loss is observed over 400°C with exothermic peaks showing in the DSC cure. This weight loss can 

be assigned to the decomposition of the polyanion in several steps according to the TGA curve and the DSC curve 

show several exothermic peaks. The total weight loss is 30%.  

 

The first degradation of compound 1 starts at 130 
o
C and for compound 2 the degradation starts at 25

o
C,, showing 

the good stability of compound 1.
36–38

 

 
Figure 7:- TGA and DSC curves: (a) compound 1 and (b) compound 2. 

 

Electrochemical properties 
All electrochemical measurements were conducted using a μStat-i 400s MetrohmDropSenspotentiostat in a single-

compartment three-electrode cell. The setup included a glassy carbon working electrode (4 mm diameter), a 

platinum wire counter electrode, and an Ag/AgCl reference electrode saturated with 3 M KCl. To investigate the 

electrochemical behavior of the compounds, cathodic scanning was performed within a potential range of -1500 to 

1500 mV versus Ag/AgCl in 1 M H₂SO₄ aqueous solutions, at a scan rate of 30 mV/s. The recorded voltammograms 
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(see Figure 8) reveal two distinct anodic and cathodic peaks. The first redox process, with cathodic peak potentials 

(Epc) at approximately -0.055 V and -0.057 V for compounds 1 and 2 respectively (peak I), corresponds to the 

reduction from Mo(VI) to Mo(V). The second process, observed at Epc potentials of approximately 0.085 V and 

0.083 V for compounds 1 and 2 respectively (peak II), indicates the reduction from Mo(V) to Mo(IV).
 22,32

 To 

further analyze the nature of the electrochemical processes, cyclic voltammograms (CVs) were recorded at various 

scan rates ranging from 5 to 100 mV/s within the same potential window. As illustrated in Figure 9, both anodic and 

cathodic peak currents increase with the scan rate. The linear relationship between peak currents and the square root 

of the scan rate suggests that the electrochemical reactions are diffusion-controlled processes.
39

 

 
Figure 8:- Electrochemical measurements of compound (a1: Cyclic voltammograms with different scan rates, a2: 

Cyclic voltammograms at scan rate = 30 mV/s b1: Cyclic voltammograms with different scan rates, b2: Cyclic 

voltammograms at scan rate = 35 mV/s) 

 

 
Figure 9:- Calibration curve for peak currents with respect to the square root of the scanning speed (a: compound 1 

and b: compound 2). 
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Conclusion:- 
In this work, we successfully synthesized two heptamolybdate-type POMs under a reflux condition which provides a 

new method of synthesized isopolyoxometalates as interacted with organoammonium groups and water molecules 

for constructing extended solid-state materials. 

 

The structure of both compounds possesses a 3D supramolecular structure composed of amines, water and 

polyanion layers pillared chains. The present work may supply a potential method for forming other related pillared 

structures via alterations to POM building blocks.  

 

The electrochemical properties of the title compounds were investigated and show for both compounds two 

reversible consecutive one-electron redox process and the square root of the scan rate indicates a diffusional process. 

These results show that for heptamolybdates, have a large number of hydrogen bonding interactions which 

contributes significantly to the thermal stability of the compounds. Therefore, this new thermally stable 

heptamolybdates could be an efficient catalyst for hydrogen peroxide oxygenation of organic sulfides. 
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