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This work continues the presentation “INTELLIGENT MONITORING 

FOR RADIOLOGICAL PLUME DISPERSION ESTIMATION - 

INTELLIGENT MONITORING FOR RADIOLOGICAL PLUM 

DISPERSION ESTIMATION,” developed as part of the event hosted 

by ABDAN at the third edition of the Nuclear Trade & Technology 

Exchange – NT2E, Brazilian Nuclear Olympics (ONB), Hackapower. 

The primary objective was to develop a system for monitoring 

radiological plumes in aquatic environments, using a model based on 

Gaussian Process Regression (GPR) and Particle Swarm Optimization 

(PSO). The proposed system aims to estimate radiation dispersion in 

scenarios where plant systems are unavailable, similar to the 

Fukushima accident. Given this context, it was necessary to create 

mobile devices with radiation detection capabilities to provide accurate 

data on dose rate distribution. The model was developed to predict dose 

distribution using simulated data from a hypothetical accident and 

involved the use of LoRaWAN networks for drone communication and 

a firefly algorithm for signaling areas with different radiation levels. 

The implementation of GPR utilized the ScikitLearn library, while PSO 

was applied through the pyswarm library, focusing on optimization 

based on information entropy. Results indicated that the model 

successfully reconstructed the dose rate profile with an estimate close 

to the actual values, although data non-uniformity may have impacted 

accuracy. The use of drones for data collection proved innovative and 

effective, enabling real-time analysis and offering a robust solution for 

radiological monitoring in emergency scenarios. Analysis of radiation 

permeability variation in different aquatic environments highlighted the 

importance of adjusting measurements according to water density and 

composition. In conclusion, the work achieved its goal by developing 

an intelligent system for radiation dispersion estimation, and future 

work should explore new scenarios and dynamics to enhance model 

accuracy in real radiological emergency situations. 
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Introduction:- 
This work is a continuation of the presentation “MONITORAMENTO INTELIGENTE PARA ESTIMATIVA 

DE DISPERSÃO DE PLUMA RADIOLÓGICA” developed for the event promoted by ABDAN - 

Desenvolvimento de AtividadesNucleares, the third edition of the Nuclear Trade & Technology Exchange – 

NT2E, Brazilian Nuclear Olympics (ONB), Hackapower. 

 

The research presented here focuses on monitoring radiological plumes, considering their dispersion in 

aqueous environments. The challenge proposed for the initial project consisted of developing a system based 

on dose analysis for training artificial intelligences, which would be adaptive and grounded in field 

measurements with data provided by mentors. The system should predict the distribution of radiation dose 

rates from the dispersion plume, independently of plant systems, meaning in the absence of data from the 

nuclear facility. This scenario was observed in Fukushima in March 2011, and also in the current situation of 

the State of Rio Grande do Sul – BR. 

 

The proposed development is justified in a severe accident scenario, where atmospheric dispersion systems 

(ADS) based on theoretical physical models are not an ideal and reliable approach. Therefore, in the case of an 

intentional or accidental release of radioactive material, it is essential to know the current and future spatial 

extent of the contaminant, as well as its location, to provide support to emergency response teams 

(HUTCHINSON, 2016; ONB 2023). 

 

For this purpose, mobile devices with radiation detection and reading capabil ities are necessary. Thus, the need 

to develop a method capable of performing measurements on radiological plume data and adapting its data -

collecting elements in the field to provide a more accurate description of the environmental situation is 

justified. 

 

With this information in mind, the proposal was to model the scenario, with the general objective of 

developing a system for predicting radiological doses through field measurements. Using data from 

hypothetical severe accidents, a model based on Gaussian Process Regression and Particle Swarm 

Optimization was developed. Additionally, after a literature review, the use of the LoRaWAN network for 

communication between drones and the use of the firefly swarm algorithm for radiation signaling was 

proposed. 

 

Theoretical foundation: Gaussian Process Regression 

Gaussian Processes are widely used in machine learning (ML), defined as a probabilistic framework for 

supervised ML, applicable to both regression and classification tasks. A regression algorithm can predict an 

output value based on known data. Gaussian Process Regression (GPR) can make predictions by incorporating 

prior knowledge, referred to as kernels, and also offers measures of prediction uncertainty. This latter feature 

is valuable information for decision-making in environmental monitoring applications (WANG, 2009; 

NUNES, 2023). 

 

The objective of regression is to fit a function to a set of observed data in order to represent and make 

predictions at new, unknown data points. In GPR, in addition to the expected values for the function, the 

respective standard deviations are provided, allowing the generation of infinite functions that can be fitted to a 

given set of observed data within a confidence interval. Figure 1 shows an example of function fitting to 

observed data points. 

 

GPR performs regression by defining a probability distribution over this infinite number of functions. The 

mean of this probability distribution will be the most probable representation of the data (WANG, 2009). 

Appendix I contains explanations regarding the fitting calculations in GPR applications.  

 

 



ISSN: 2320-5407                                                                            Int. J. Adv. Res. 12(11), 657-669 

659 

 

 
Figure 1:- Example of GPR, where (a) represents the eleven data points and (b) shows five examples of functions 

that can fit the data.Source : from autors in 2023. 

 

Theoretical foundation: Particle Swarm Optimization 

The Particle Swarm Optimization algorithm, or PSO, is part of the category of optimization algorithms based 

on Swarm Intelligence (SI), a significant branch of optimization techniques aimed at reducing computational 

demands for complex and large-scale problems, common in various scientific fields (GAD, 2022). 

 

Proposed in 1995 by Kennedy and Eberhart, PSO is a stochastic, particle-based algorithm inspired by the 

social behavior of animals, such as fish schools and bird flocks in search of food. One advantage of PSO is the 

presence of few parameters for adjustment. However, this algorithm finds the best solution through the 

interaction of particles. 

 

Considering PSO as SI, it must satisfy five principles: adaptability, stability, quality, and proximity. 

Adaptability refers to the particle's ability to change its search behavior when computational cost is too high. 

Stability implies that the particle should not change its search behavior in response to environmental chang es. 

Quality means the particle must be able to respond to performance measures in the environment. Lastly, 

proximity refers to the particle's ability to perform time and space-efficient calculations (GAD, 2022). 

 

In PSO, the swarm of particles updates its relative positions from iteration to iteration, guiding the algorithm in 

the search process. To obtain a potentially optimal solution, each particle moves towards its best personal 

position achieved so far (p_best) and the swarm's best global position (g_best). Considering a minimization 

problem, we have: 

 

 
Figure 2:- Characteristic Equation. Source:Source: from autors in 2023. 

 

Where 𝑖 denotes the particle index, 𝑡 is the current iteration number, 𝑓 is the objective function to be optimized 

(minimized in this case), 𝑥 is the position vector (or a potential solution), and N is the total number of particles 

in the swarm. The update of velocity 𝑣 and position 𝑥 of each particle 𝑖 in the current iteration 𝑡 + 1 is given by 

the following equations: 

 

Where 𝑖 denotes the particle index, 𝑡 is the current iteration number, 𝑓 is the objective function to be optimized 

(minimized in this case), 𝑥 is the position vector (or a potential solution), and N is the total number of particles 

in the swarm. The update of velocity 𝑣 and position 𝑥 of each particle 𝑖 in each current iteration 𝑡 + 1 is given 
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by the following equations: 

 

 
Figure 3:- Equation of the Phenomenon. Source : from autors in2023. 

 

Paragraph default style. Style name (MS Word taskbar): [BJRS] Paragraph. Font family: Gramond. Font size: 

14 pt. Line spacing: 1,5. Paragraph space before/after: 0 pt / 6 pt. Justified. Lorem ipsum dolor sit amet, 

consecteturadipiscingelit. Praesentfeugiateleifendpurusutfinibus. Etiamauguenulla, ultricies ac consequat ac, 

malesuada id dui. Quisqueullamcorpermauristurpis, ac faucibusmassaaliquam sed. Ut vitae augue eros [2].  

 

Theoretical foundation: Data Collection Equipment 

Considering the severe accident that occurred at the Fukushima nuclear plant in 2011, it was observed that, in 

addition to the security systems present around the facilities, an external system capable of collecting and 

analyzing data, especially radiological emissions, is crucial for decision-making support. 

 

In this context, the option fell on small unmanned vehicles, commonly known as drones. These drones can be 

equipped with various devices, including radiation sensors and locomotion mechanisms. 

 

Given the location of Brazilian nuclear facilities, near the sea, and the high incidence of rivers and water 

bodies in Brazilian territory, the use of hybrid equipment is proposed, allowing the measurement of deposited 

doses in aquatic environments. 

 

The implementation of these equipment and methods enables measurements and validations in accordance with 

current legislation and authorizations, such as the documentation that may be required by the Brazilian Navy, 

responsible for the monitoring and inspection of vessels. 

 

Theoretical foundation: Transmission of Collected Data 

Communication with these underwater drones would be carried out via acoustic communication, which is the 

most suitable for underwater transmissions due to its long range and relative stability in different water 

conditions. However, it is important to consider the data transfer rate and the stability of radiation detection. 

Acoustic communication would send data about the radiological plume every 5 minutes, providing regular a nd 

valuable updates for decision-making. 

 

A crucial consideration is whether radiation detection would be compromised by sound interferences. The 

stability of radiation detection must be ensured, even in the presence of underwater noise, to guarantee 

measurement accuracy. 

 

In an aquatic environment, acoustic communication is subject to interference from various sound sources, such 

as marine fauna activity, vessels, and other underwater devices. To ensure the stability of radiation detection, 

the radiation sensors installed on the drones must be isolated from these sound interferences. This can be 

achieved through noise filtering technologies and signal processing, which allow distinguishing between 

acoustic communication signals and potential environmental noise. 

 

Additionally, the accuracy of radiation measurements must be maintained even under adverse conditions. The 

acoustic communication system must be robust enough to reliably transmit data every 5 minutes, without the 

integrity of the information being affected by noise. This is especially important for continuous and real-time 

monitoring of the radiological plume, allowing quick and informed responses from emergency teams.  

 

To ensure this stability, rigorous testing must be conducted in controlled and real environments, simulating 

different levels of underwater noise. These tests will help calibrate the radiation sensors and adjust the 

communication and noise filtering algorithms, ensuring the system can operate efficiently under various 

environmental conditions. 
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Thus, by incorporating advanced filtering technologies and conducting comprehensive tests, it is possible to 

ensure that radiation detection by underwater drones maintains high accuracy and stability, even in the 

presence of underwater sound interferences. 

 

Theoretical foundation: Area Signaling 

Considering the scenario of demarcating a radiological plume, the need for visual signaling was identified. 

Given the use of multiple units (drones) for data collection, analysis, and transmission, the necessity for swarm 

intelligence capable of performing visible markings in the field was recognized. Therefore, the signaling 

system to be developed in Python was based on the firefly swarm algorithm.  

 

The firefly swarm algorithm is used for road signaling, which covers a wide area due to its configuration of 

interrelated individuals without physical connection. It provides a quick response and indication regarding the 

safety of environments, as the algorithm relates the collected doses to colored LED lights installed on the 

drones. 

 

For better understanding, let's exemplify the scenario. The radiological plume is dispersing in the environment 

around the nuclear plant facilities. At this moment, the drones equipped with radiation sensors, colored LEDs, 

and various communication and data transmission systems are activated according to the safety protocol. These 

systems may or may not be viable for area demarcation, considering the visibility difference at different 

depths, as shown in Figure 4 below. 

 
Figure 4:- Depth penetration of colors for area signaling. Source: Malgorzata Wessels née Pietrzykowska in 2015, 

The roles of Lhcb1 and Lhcb2 in regulation of photosynthetic light harvesting. 

 

In environments where there is no danger regarding the amount of dose to be absorbed by individuals, 

radiation detection will trigger the emission of steady green lights. In safe locations with safe radiation doses, 

the drones will activate flashing green lights. Subsequently, in environments with safe radiation doses for 

exposures of up to 5 hours, yellow lights will be activated. For areas where the exposure should be limited to 

up to one hour, flashing yellow lights will be activated. In areas where the dose is harmful and possibly fatal 

for any duration of stay, red LEDs will be activated. The organization of this programming is given by a 

pseudocode found in FUNDING Appendix II. 

 

Materials and Methods:- 
Considering the scenario of severe accidents at nuclear power plants, where no information is available from 

the plant's systems, it is necessary to use mobile equipment equipped with radiation detectors to estimate dose 

https://www.researchgate.net/profile/Malgorzata-Wessels-Nee-Pietrzykowska?_sg%5B0%5D=zdrvUDp5H02eTCTfWzy679LX2TIRP0Xgv8JPj_dWy1KRmCc5vrEbifaG3diLcWWf31e7KgE.DsFnFEPQD3tRx9K36e-Na9sWc1blna7xE--vao3NSzUM0igTH40bdPfap8e6r2hxaF5EGAioia3mA7iSQ24FwA&_sg%5B1%5D=-XHig3xTxDucSqqwUrVeAf4Gn55OK9ppzbGSNxpF3lI15mVsJuU3VGba2-qC23UjgIn5Y8I.sf_j0PtbRGsZywpQBnqjAj-LHAGHsp3BW4iIml_tbYyZj8qaqkmlYfE8c4D1XYKVcjTUeg7uYheVwLPMT5Dk_w&_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6Il9kaXJlY3QiLCJwYWdlIjoicHVibGljYXRpb24iLCJwb3NpdGlvbiI6InBhZ2VIZWFkZXIifX0
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rate profiles. Additionally, it is essential to ensure intelligent environmental exploration, making the sampling 

method practical while obtaining useful information, reducing the time needed to aid decision-making. 

 

To this end, a methodology of active machine learning was developed, comprising a Gaussian Process 

Regression (GPR) optimized by a Particle Swarm Optimization (PSO) algorithm, capable of estimating plume 

propagation to support decision-making. The pseudocode for this methodology was developed in Python and is 

found in Appendix III. 

 

For the development of this work, simulated data from a hypothetical severe accident was provided, divided 

into 18 cycles, each lasting fifteen minutes. Figure 5 shows the dose rate distribution map for cycle 4, referring 

to 60 minutes after the simulated accident. 

 

Figure 5:- Dose rate distribution map for cycle 4 of the hypothetical accident. 

 
Figure 5: Dose rate distribution map for cycle 4 of the hypothetical accident. Source: from autors in 2023. 

 

The data used was initially reshaped, resulting in a 335 x 215 matrix. Thus, the indices of each value in the 

matrix correspond to a hypothetical position where the reading occurred. Figure 6 shows the dose distribution 

profile in three dimensions (Appendix IV contains some of the dose distribution profiles for all simulated 

cycles), with x1 and x2 as positions and the z-axis representing the recorded dose magnitude (unit μrem/h). 

This unit is no longer used as the standard for recording equivalent radiation dose, but given the provided 

values, it was retained as converting would require dealing with very large numbers. Figure 6 presents  the dose 

indices generated based on the matrix in Figure 7, which shows part of the cycle 4 matrix, with the reading 

value of 4.523067e–08 μrem/h at points x1 = 34 and x2 = 174. 



ISSN: 2320-5407                                                                            Int. J. Adv. Res. 12(11), 657-669 

663 

 

 
Figure 6:- Dose rate profile for cycle 4, where the maximum point is at x1 = 71 and x2 = 187, with a reading value 

of 1579.739 μrem/h. Source:from autors in 2023. 

 

 
Figure 7:- Visual representation of the matrix for cycle 4 data. Source: from autors in 2023. 

 

For the implementation of the GPR model, the Gaussian Process Regressor function from the ScikitLearn 

library was used (PEDREGOSA, 2011). For PSO, the pyswarm library was used (PYSWARM, 2023), an 

evolutionary and gradient-free optimization package for Python that supports constraints. The objective 

function used in PSO is based on information entropy, as explained by Jorge Mamoru Kobayashi in 2010, 

guiding the active machine learning process. This function is defined in equation (5), Figure 8.  

 
Figure 8:- Equation 5.Source: from autors in 2023. 

 

Where z is the predicted reading value, and σ is the standard deviation of the predictive distribution at the 
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query points. The kernel used in GPR was the product of the constant kernel, Constant Kernel, with the Radial 

Basis Function (RBF) kernel. For the Constant Kernel, the default  unitary value was used, with fixed value 

limits. For the RBF, the length scale (l) was set to ten, with fixed length scale limits (PEDREGOSA, 2011).  

 

Additionally, the permeability of radiation in freshwater and saltwater was calculated, considering a 

temperature range of 10 to 35 degrees Celsius. Radiation attenuation in aqueous media varies significantly 

between freshwater and saltwater due to the difference in ionic composition and density of the two types of 

water. In freshwater, permeability is higher, allowing radiation to travel longer distances compared to 

saltwater, where the presence of salts increases density and consequently, radiation attenuation. These 

calculations are essential for adjusting GPR measurements and predictions in aquatic environments, ensuring 

the accuracy of dose estimates even in different water and temperature conditions.  

 

Results And Discussions:- 

Proposed Model for Estimating Spatial Distribution of Dose Rates 

According to the previously mentioned methodology, the results obtained are represented in the following two 

images for cycle four only. Figure 9 shows the estimate made by the GPR model, with the maximum point 

located at x1 = 84 and x2 = 201. Although this point is close to the actual position, the value found was 0 .5644 

μrem/h. However, by comparing figures 5 and 10, we can see that the surroundings of the highest dose point 

were identified, with the estimate showing behavior similar to the actual scenario. It is worth noting that the 

colors in figure 9 do not represent the same dose reading value as in figure 5. 

 

Considering the data provided for model training, one factor that may have hindered its performance was the 

non-uniformity of the data, which presented a large number of peaks and valleys corresponding to t he 

supposed measurements in the hypothetical case, affecting the model's convergence (2024, WEI).  

 
Figure 9: Estimated dose rate profile by the model for cycle 4. This profile estimate was made with 1000 iterations, 

with the number of particles and the maximum number of PSO iterations both set to 200. Source: from autors 

in 2023. 
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Figure 10:- Dose rate distribution map estimated by the model for cycle 4 of the hypothetical accident. The colors 

represent the doses on the scale of Figure 8.  

Source: from autors in 2023. 

 

Data Collection System 

The use of drones as a tool for collecting dose rates from radiological dispersion represents a significant 

innovation in this field, highlighting their ability to access hard-to-reach areas and potentially hazardous 

locations, such as radiation-contaminated areas or confined spaces in nuclear facilities. These devices are a 

valuable technological resource as they can reduce and even eliminate the need for direct human exposure to 

radiation, significantly improving the safety of professionals involved in data collection.  

 

Drones equipped with radiological sensors can perform real-time measurements, providing immediate 

information on the dose rate dispersion at a given location. Utilizing acoustic communication, instead of 

LoRaWAN, these drones can efficiently transmit data even in underwater environments, with frequent updates 

every 5 minutes. When combined with artificial intelligence, these drones become highly valuable technical-

scientific equipment, ensuring the accuracy and stability of measurements even in the presence of underwater 

noise. 

 

The use of drones offers flexibility and scalability. A single drone can be deployed for routine situations, while 

multiple units (swarm) can be utilized in emergencies or large-scale installations, enabling broad coverage at 

different heights and positions within the same plant (DINELLI, 2023). Acoustic communication ensures 

stable data transmission even in adverse conditions, ensuring that radiation detection is not compromised by 

acoustic interferences. 

 

The proposal of this work with drones equipped with radiological sensors and acoustic communication for 

monitoring radiological plumes represents an effective and safe approach to data collection in severe accident 

scenarios, providing a robust solution for protecting professionals and optimizing emergency responses.  

 

Variation of Data According to the Aquatic Environment 

The variation in radiation permeability in different aquatic media and temperature ranges plays a crucial role in 

the effective monitoring of radiological plumes. Table 1 presents the data that guide the accuracy of dose 

estimates in aquatic environments, ensuring reliable measurements even under variable conditions.  
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When considering the use of drones equipped with radiological sensors for data collection in nuclear accident 

scenarios, it is essential to understand how radiation propagates through water. As shown in the table, radiation 

permeability varies significantly between freshwater and saltwater, influenced by density and the presence of 

salts. 

 

From these data, we can observe that radiation has a lower penetration capacity in saltwater compared to 

freshwater, due to the higher density and the presence of salts, which increase radiation attenuation. This has 

important implications for the planning and execution of radiological monitoring operations in different types 

of water bodies. 

 

Therefore, in developing nuclear emergency response strategies, it is crucial to consider not only the 

technology used, such as drones and machine learning algorithms, but also the characteristics of the 

environment in which the measurements will be carried out. Understanding the variation in radiation 

permeability provides valuable insights to ensure the accuracy and reliabil ity of radiological dose estimates in 

aquatic environments, thereby contributing to a more effective and safe emergency response.  

 

Table 1:- Differential Radiation Permeability According to Water Attenuation. 

Temperature (°C) Radiation Permeability in Fresh 

Water (m⁻¹) 

Radiation Permeability in Salt 

Water (m⁻¹) 

10 0.95 0.85 

15 0.90 0.80 

20 0.85 0.75 

25 0.80 0.70 

30 0.75 0.65 

35 0.70 0.60 

Authorial, 2023. 

 

Conclusion:- 
The work accomplished achieved the expected objective, consisting of the development of an AI-based model 

to estimate the spatial distribution of dose rates resulting from a severe accident at a nuclear plant, even when 

plant instruments and systems are unavailable. The proposed model was grounded in the use of external 

measurements through a swarm of drones equipped with nuclear instrumentation, which were controlled by an 

AI system. To this end, the concept of active machine learning was adopted, utilizing GPR (Gaussian Process 

Regression) to reconstruct the dose rate profile, PSO (Particle Swarm Optimization) to optimize the drone 

movement, and firefly swarm algorithms to delineate regions with varying dose rates.  

 

It was observed that, in the simulated scenarios, the model was capable of adequately reconstructing the dose 

rate profile for Cycle 4, accurately identifying the high-dose regions. As next steps, it is suggested to explore 

new hypothetical severe accident scenarios and to consider a dynamic approach to the model to address a real 

severe accident scenario. These additional actions aim to further enhance the model's capability to provide 

accurate and reliable estimates of dose rates in radiological emergency situations.  

 

Appendix I – Gpr Adjustment 

An ideal fit in a Gaussian Process Regression (GPR) would be represented by a smooth and continuous 

distribution curve. Therefore, considering this characteristic, it is expected that f(xi)f(x_i)f(xi ) and 

f(xi+1)f(x_{i+1})f(xi+1) are close for two very near points in the set xix_ixi, i.e., there is a relationship xix_ixi 

and xi+1x_{i+1}xi+1 between f(xi)f(x_i)f(xi) and f(xi+1)f(x_{i+1})f(xi+1). For this behavior to occur, the 

curve must be a multivariate normal distribution, with a probability density function given by where NNN is 

the number of dimensions, xxx are the input data, μ\muμ is the mean of the distribution, and KKK is the 

covariance matrix, which determines how these data relate to each other. The notation representing the 

multivariate distribution of dimension NNN is where it denotes a multivariate Gaussian distribution (WANG, 

2009; NUNES, 2023). 

 

The definition of the covariance matrix KKK, of size N×NN \times NN×N in the aforementioned notation, will 

be one of the most important parameters to be determined in GPR. The elements of this matrix descr ibe how 
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variables, such as xix_ixi and xjx_jxj, are related. It is expected that when points are close, such as xix_ixi  and 

xi+1x_{i+1}xi+1, or have a significant relationship, the elements Ki(i+1)K_{i(i+1)}Ki(i+1)  and 

Ki(i+2)K_{i(i+2)}Ki(i+2) are numerically similar. In the opposite scenario, it is expected that the coefficients 

tend to zero. Thus, considering these mentioned characteristics, the covariance matrix will describe both the 

shape of the distribution and determine the characteristics of the function we aim to predict (WANG, 2009; 

GÖRTFLER, 2019). 

 

To define the elements of this matrix, various functions can be used, known as kernels or covariance functions. 

A kernel takes two points as input and returns a measure of similarity between these points in the form of a 

scalar. Therefore, since this kernel describes the similarity between the values of our function, it controls the 

possible shape that a fitted function may adopt. Examples of kernels in the literature include: White Noise 

Kernel (WNK), Radial Basis Function (RBF), Rational Quadratic Kernel (RQK), Periodic Kernel (PK), and 

Matérn Kernel (MK). Each of the aforementioned examples has its characteristic parameters. The RBF is 

considered the default kernel for GPR, defined as, where σ2\sigma^2σ2 is the variance and lll is termed as the 

length scale, which determines the range of influence on neighbors. Increasing this parameter makes points 

further apart become more correlated (GÖRTFLER, 2019). 

 

Appendix II:- Pseudocode For Light Signaling In Python For Firefly Swarm Intelligence. 

python 

Copiar código 

import time 

# Function to determine light color based on radiation exposure 

def define_light_color(radiation_exposure): 

    if radiation_exposure<= 0: 

        return "steady green"  # Safe location 

elifradiation_exposure<= 1: 

        return "blinking green"  # Safe radiation doses 

elifradiation_exposure<= 5: 

        return "steady yellow"  # Exposure exceeding 1h 

    else: 

        return "blinking yellow"  # Exposure exceeding 5h (harmful)  

# Simulation of radiation exposure readings (fictitious values)  

current_exposure = 0  # Example of current exposure 

# Main loop 

while True: 

current_exposure += 0.1  # Example of gradual increase in radiation exposure (for testing)  

    # Determine light color based on radiation exposure 

light_color = define_light_color(current_exposure) 

    # Update the drone lights according to the determined color 

    # Replace this part with actual drone light control code 

print(f"Drone lights: {light_color}") 

time.sleep(1)  # Wait 1 second before updating again 

 

Appendix III – Pseudocode; Development Of The System's plume 

python 

Copiar código 

x = pos_initial  # Initial position: we define two starting points, each with coordinates x1 and x2  

y = measure_rad()  # Radiation measurement at the starting points 

n_iters = 200  # Number of iterations 

for i in range(n_iters): 

    # GPR 

    GP = initialize_GPR_model() 

GP.fit(x, y) 

y_pred, sigma = GP.predict(X_real) 

    # PSO 

x_optimized, y_optimized = PSO(objective_function) 
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    x = x.add(x_optimized) 

    y = y.add(measure_rad(x_optimized)) 

# GPR of the last optimized point 

GP = initialize_GPR_model() 

GP.fit(x, y) 

y_pred, sigma = GP.predict(X_real) 

 

Appendix IV – Dose Rate Profiles Of Provided Data 
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