

RESEARCH ARTICLE

ON APPROXIMATION BY STANCU TYPE OPERATORS IN MOBILE INTERVAL

Nandita Gupta

Government Polytechnic, Mahasamund Chhattisgarh, India.

..... Manuscript Info Abstract Manuscript History In the present paper we propose Stancu type operators in mobile Received: 18 June 2024 interval. We discuss its approximation properties. We also give an Final Accepted: 20 July 2024 asymptotic estimate through Voronovskaja - type result for these Published: August 2024 operators.

Key words:-

Linear positive Operators, Stancu type operators, Modulus of Continuity, Voronovskaja-Type theorem

Copyright, IJAR, 2024,. All rights reserved.

Introduction:-

Stancu [4] introduced an operator, known as Stancu operator, defined by

$$(S_n f)(x) = \sum_{k=0}^{n-sr} p_{n-sr,k}(x) \sum_{j=0}^{s} \left[p_{s,j}(x) f\left(\frac{k+jr}{n}\right) \right]$$
(1.1)

Where

$$p_{n,k}(x) = \binom{n}{k} x^k (1-x)^{n-k}$$

.....

here r and s are non-negative integer parameters satisfying the condition 2sr < n. For r = 0 or s = 0, Stancu operator is the Bernstein operator. Also when s=r=1, Stancu operators become the well known Bernstein operators.

For $e_i(t) = t^j, j = 0, 1, 2,$

$$\begin{aligned} &(S_n e_0)(x) &= 1 \\ &(S_n e_1)(x) &= x \\ &(S_n e_2)(x) &= x^2 + \left(1 + \frac{sr(r-1)}{n}\right) \frac{x(1-x)}{n} \end{aligned}$$

M.A.Siddiqui et. al.[3] introduced in 2014, the class of new Bernstein type operators as

$$V_n^*(f;x) = \sum_{k=0}^n p_{n,k}(x) f\left(\frac{k}{n+1}\right)$$
(1.2)

where $f \in C\left[0, \frac{n}{n+1}\right]$ and

Corresponding Author:-Nandita Gupta

Address:-Government Polytechnic, Mahasamund Chhattisgarh, India.

782

$$p_{n,k}(x) = \left(\frac{1+n}{n}\right)^n \binom{n}{k} x^k \left(\frac{n}{n+1} - x\right)^{n-k}$$
(1.3)

These operators were defined on mobile interval.

Now using the technique used in Stancu operators we propose the operator,

$$(S_n^*f)(x) = \sum_{k=0}^{n-sr} p_{n-sr,k}(x) \sum_{j=0}^{s} \left[p_{s,j}(x) f\left(\frac{k+jr}{n+1}\right) \right]$$
(1.4)

where $f \in C\left[0, \frac{n}{n+1}\right]$, r and s are parameters which are non negative and satisfy the condition : 2sr < n and $p_{n,k}(x)$ is given by (1.3). For r = 0 or s = 0 or s = r = 1 operators (1.4) reduce to operators (1.2).

AUXILIARY RESULTS:-

In this section we give some lemmas which will be used further in section 3 and 4. **Lemma2.1.** For each $f \in C\left[0, \frac{n}{n+1}\right]$, $n \in N$ and non-negative integers r, s satisfying the condition: 2sr < n we have,

$$\begin{split} (i)S_n^*(e_0;x) &= 1\\ (ii)S_n^*(e_1;x) &= x\\ (iii)S_n^*(e_2;x) &= x^2 + \left[1 + \frac{sr(r-1)}{n}\right]\frac{x}{n}\left(\frac{n}{n+1} - x\right)\\ (iv)S_n^*(e_3;x) &= x^3 \left[\frac{(n-1)(n-2)}{n^2} + \frac{2sr(r^2-1)}{n^3} - \frac{3sr(r-1)}{n^2}\right] + 3x^2 \left[\frac{(n-1)}{n(n+1)} + \frac{sr(r-1)}{n(n+1)} - \frac{sr(r^2-1)}{n^2(n+1)}\right] + \frac{x}{(n+1)^2} \left[1 + \frac{sr(r^2-1)}{n}\right]\\ (v)S_n^*(e_4;x) &= x^4 \left[\frac{(n-1)(n-2)(n-3)}{n^3} + \frac{3(sr(r-1))^2}{n^4} - \frac{6sr(r^3-1)}{n^4} - \frac{6sr(r-1)}{n^2} + \frac{8sr(r^2-1)}{n^3}\right] + 6x^3 \left[\frac{(n-1)(n-2)}{n^2(n+1)} - \frac{(sr(r-1))^2}{n^3(n+1)} + \frac{2sr(r^3-1)}{n^3(n+1)} + \frac{sr(r-1)}{n^3(n+1)} + \frac{sr(r-1)}{n^2(n+1)^2} + \frac{2sr(r^3-1)}{n^2(n+1)^2} + \frac{6sr(r-1)}{n^2(n+1)^2} + \frac{4sr(r^2-1)}{n(n+1)^2}\right] + x \left[\frac{1}{(n+1)^3} + \frac{sr(r^3-1)}{n(n+1)^3}\right] \end{split}$$

where $e_j(t) = t^j$, j = 0, 1, 2, 3, 4.

Proof. From (1.3) we get,

$$\sum_{k=0}^{s} p_{s,k}(x) = 1 \qquad (2.1)$$

$$\sum_{k=0}^{s} p_{s,k}(x) \left(\frac{k}{n+1}\right) = \sum_{k=0}^{s} \left(\frac{1+n}{n}\right)^{s} {s \choose k} x^{k} \left(\frac{n}{n+1}-x\right)^{s-k} \left(\frac{k}{n+1}\right)$$

$$= \left(\frac{1+n}{n}\right)^{s} \sum_{k=1}^{s} \frac{s!}{(k-1)!(s-k)!} x^{k} \left(\frac{n}{n+1}-x\right)^{s-k} \left(\frac{1}{n+1}\right)$$

$$= \frac{sx}{(n+1)} \left(\frac{1+n}{n}\right)^{s} \sum_{k=0}^{s-1} \frac{(s-1)!}{(k)!(s-1-k)!} x^{k} \left(\frac{n}{n+1}-x\right)^{s-1-k}$$

$$= \frac{sx}{(n+1)} \left(\frac{1+n}{n}\right)^{s} \sum_{k=0}^{s-1} {s-1 \choose k} x^{k} \left(\frac{n}{n+1}-x\right)^{s-1-k}$$

$$= \frac{sx}{(n+1)} \left(\frac{1+n}{n}\right)^{s} \left(\frac{n}{n+1}\right)^{s-1}$$

$$= \frac{sx}{n} \qquad (2.2)$$

and

$$\sum_{k=0}^{s} p_{s,k}(x) \left(\frac{k}{n+1}\right)^2 = \sum_{k=0}^{s} \left(\frac{1+n}{n}\right)^s {\binom{s}{k}} x^k \left(\frac{n}{n+1} - x\right)^{s-k} \left(\frac{k(k-1)+k}{(n+1)^2}\right)$$
$$= \frac{1}{(n+1)^2} \left(\frac{1+n}{n}\right)^s \left[s(s-1)x^2 \left(\frac{n}{n+1}\right)^{s-2} + sx \left(\frac{n}{n+1}\right)^{s-1}\right]$$
$$= s(s-1)\frac{x^2}{n^2} + \frac{sx}{n(n+1)}$$
(2.3)

$$\begin{split} \sum_{k=0}^{s} p_{s,k}(x) \left(\frac{k}{n+1}\right)^{3} &= \sum_{k=0}^{s} \left(\frac{1+n}{n}\right)^{s} {s \choose k} x^{k} \left(\frac{n}{n+1}-x\right)^{s-k} \left(\frac{k(k-1)(k-2)}{(n+1)^{3}}\right) \\ &= \sum_{k=0}^{s} \left(\frac{1+n}{n}\right)^{s} {s \choose k} x^{k} \left(\frac{n}{n+1}-x\right)^{s-k} \left(\frac{3k(k-1)+k}{(n+1)^{3}}\right) \\ &= \frac{1}{(n+1)^{3}} \left(\frac{1+n}{n}\right)^{s} \left[s(s-1)(s-2)x^{3} \left(\frac{n}{n+1}\right)^{s-3} \\ &+ 3s(s-1)x^{2} \left(\frac{n}{n+1}\right)^{s-2} + sx \left(\frac{n}{n+1}\right)^{s-1}\right] \\ &= s(s-1)(s-2)\frac{x^{3}}{n^{3}} + \frac{3s(s-1)x^{2}}{n^{2}(n+1)} + \frac{sx}{n(n+1)^{2}} \end{split}$$
(2.4)

$$\begin{split} \sum_{k=0}^{s} p_{s,k}(x) \Big(\frac{k}{n+1}\Big)^{4} &= \sum_{k=0}^{s} \Big(\frac{1+n}{n}\Big)^{s} {\binom{s}{k}} x^{k} \Big(\frac{n}{n+1} - x\Big)^{s-k} \Big(\frac{k(k-1)(k-2)(k-3)}{(n+1)^{4}}\Big) \\ &+ \sum_{k=0}^{s} \Big(\frac{1+n}{n}\Big)^{s} {\binom{s}{k}} x^{k} \Big(\frac{n}{n+1} - x\Big)^{s-k} \Big(\frac{6k(k-1)(k-2)}{(n+1)^{4}}\Big) \\ &+ \sum_{k=0}^{s} \Big(\frac{1+n}{n}\Big)^{s} {\binom{s}{k}} x^{k} \Big(\frac{n}{n+1} - x\Big)^{s-k} \Big(\frac{7k(k-1)+k}{(n+1)^{4}}\Big) \\ &= \frac{1}{(n+1)^{4}} \Big(\frac{1+n}{n}\Big)^{s} \Big[s(s-1)(s-2)(s-3)x^{4} \Big(\frac{n}{n+1}\Big)^{s-4} \\ &+ 6s(s-1)(s-2)x^{3} \Big(\frac{n}{n+1}\Big)^{s-3} + 7s(s-1)x^{2} \Big(\frac{n}{n+1}\Big)^{s-2} \\ &+ sx \Big(\frac{n}{n+1}\Big)^{s-1}\Big] \\ &= s(s-1)(s-2)(s-3)\frac{x^{4}}{n^{4}} + \frac{6s(s-1)(s-2)x^{3}}{n^{3}(n+1)} + \frac{7s(s-1)x^{2}}{n^{2}(n+1)^{2}} \\ &+ \frac{sx}{n(n+1)^{3}} \end{split}$$
(2.5)

We have from (1.4),

$$(S_n^*f)(x) = \sum_{k=0}^{n-sr} p_{n-sr,k}(x) \sum_{j=0}^{s} \left[p_{s,j}(x) f\left(\frac{k+jr}{n+1}\right) \right]$$

Using (2.1), (2.2), (2.3), (2.4), (2.5) we compute,

$$S_{n}^{*}(e_{0};x) = \sum_{k=0}^{n-sr} p_{n-sr,k}(x) \sum_{j=0}^{s} \left[p_{s,j}(x) \right] = 1$$

$$S_{n}^{*}(e_{1};x) = \sum_{k=0}^{n-sr} p_{n-sr,k}(x) \sum_{j=0}^{s} p_{s,j}(x) \left(\frac{k+jr}{n+1}\right)$$

$$= \sum_{k=0}^{n-sr} p_{n-sr,k}(x) \left(\frac{k}{n+1}\right) + r \sum_{j=0}^{s} p_{s,j}(x) \left(\frac{j}{n+1}\right)$$

$$= (n-sr) \frac{x}{n} + r \frac{sx}{n}$$

$$= x$$

$$S_{n}^{*}(e_{2};x) = \sum_{k=0}^{n-sr} p_{n-sr,k}(x) \sum_{j=0}^{s} p_{s,j}(x) \left(\frac{k+jr}{n+1}\right)^{2}$$
(2.6)

$$=\sum_{k=0}^{n-sr} p_{n-sr,k}(x) \left(\frac{k}{n+1}\right)^2 + 2r \sum_{k=0}^{n-sr} p_{n-sr,k}(x) \left(\frac{k}{n+1}\right) \left[\sum_{j=0}^{s} p_{s,j}(x) \left(\frac{j}{n+1}\right)\right] \\ + r^2 \sum_{j=0}^{s} p_{s,j}(x) \left(\frac{j}{n+1}\right)^2 \\ = (n-sr)(n-sr-1)\frac{x^2}{n^2} + (n-sr)\frac{x}{n(n+1)} + 2r \left[(n-sr)\frac{x}{n}\right] \left[\frac{sx}{n}\right] \\ + r^2 \left[s(s-1)\frac{x^2}{n^2} + \frac{sx}{n(n+1)}\right] \\ = x^2 + \left[1 + \frac{sr(r-1)}{n}\right] \frac{x}{n} \left(\frac{n}{n+1} - x\right)$$
(2.7)
Similarly,

$$S_{n}^{*}(e_{3};x) = \sum_{k=0}^{n-sr} p_{n-sr,k}(x) \sum_{j=0}^{s} p_{s,j}(x) \left(\frac{k+jr}{n+1}\right)^{3}$$

$$= \sum_{k=0}^{n-sr} p_{n-sr,k}(x) \left(\frac{k}{n+1}\right)^{3} + 3r \sum_{k=0}^{n-sr} p_{n-sr,k}(x) \left(\frac{k}{n+1}\right)^{2} \left[\sum_{j=0}^{s} p_{s,j}(x) \left(\frac{j}{n+1}\right)\right]$$

$$+ 3r^{2} \sum_{k=0}^{n-sr} p_{n-sr,k}(x) \left(\frac{k}{n+1}\right) \left[\sum_{j=0}^{s} p_{s,j}(x) \left(\frac{j}{n+1}\right)^{2}\right] + r^{3} \sum_{j=0}^{s} p_{s,j}(x) \left(\frac{j}{n+1}\right)^{3}$$

$$= x^{3} \left[\frac{(n-1)(n-2)}{n^{2}} + \frac{2sr(r^{2}-1)}{n^{3}} - \frac{3sr(r-1)}{n^{2}}\right] + 3x^{2} \left[\frac{(n-1)}{n(n+1)} + \frac{sr(r-1)}{n(n+1)} - \frac{sr(r^{2}-1)}{n^{2}(n+1)}\right] + \frac{x}{(n+1)^{2}} \left[1 + \frac{sr(r^{2}-1)}{n}\right]$$
(2.8)

And

$$\begin{split} S_n^*(e_4;x) &= \sum_{k=0}^{n-sr} p_{n-sr,k}(x) \sum_{j=0}^s p_{s,j}(x) \Big(\frac{k+jr}{n+1}\Big)^4 \\ &= \sum_{k=0}^{n-sr} p_{n-sr,k}(x) \Big(\frac{k}{n+1}\Big)^4 + 4r \sum_{k=0}^{n-sr} p_{n-sr,k}(x) \Big(\frac{k}{n+1}\Big)^3 \Big[\sum_{j=0}^s p_{s,j}(x) \Big(\frac{j}{n+1}\Big)\Big] \\ &+ 6r^2 \sum_{k=0}^{n-sr} p_{n-sr,k}(x) \Big(\frac{k}{n+1}\Big)^2 \Big[\sum_{j=0}^s p_{s,j}(x) \Big(\frac{j}{n+1}\Big)^2\Big] + 4r^3 \sum_{k=0}^{n-sr} p_{n-sr,k}(x) \\ &\times \Big(\frac{k}{n+1}\Big) \Big[\sum_{j=0}^s p_{s,j}(x) \Big(\frac{j}{n+1}\Big)^3\Big] + r^4 \sum_{j=0}^s p_{s,j}(x) \Big(\frac{j}{n+1}\Big)^4 \end{split}$$

$$= x^{4} \Big[\frac{(n-1)(n-2)(n-3)}{n^{3}} + \frac{3(sr(r-1))^{2}}{n^{4}} - \frac{6sr(r^{3}-1)}{n^{4}} - \frac{6sr(r-1)}{n^{2}} \\ + \frac{8sr(r^{2}-1)}{n^{3}} \Big] + 6x^{3} \Big[\frac{(n-1)(n-2)}{n^{2}(n+1)} - \frac{(sr(r-1))^{2}}{n^{3}(n+1)} + \frac{2sr(r^{3}-1)}{n^{3}(n+1)} \\ + \frac{sr(r-1)}{n(n+1)} - \frac{2sr(r-1)}{n^{2}(n+1)} - \frac{2sr(r^{2}-1)}{n^{2}(n+1)} \Big] + x^{2} \Big[\frac{7(n-1)}{n(n+1)^{2}} + \frac{3(sr(r-1))^{2}}{n^{2}(n+1)^{2}} \\ - \frac{7sr(r^{3}-1)}{n^{2}(n+1)^{2}} + \frac{6sr(r-1)}{n(n+1)^{2}} + \frac{4sr(r^{2}-1)}{n(n+1)^{2}} \Big] + x \Big[\frac{1}{(n+1)^{3}} + \frac{sr(r^{3}-1)}{n(n+1)^{3}} \Big]$$

$$(2.9)$$

Lemma2.2. For each $x \in [0, \frac{n}{n+1}]$, $n \in N$ and non-negative integers r,s satisfying the condition: 2sr < n, following equalities hold,

 $(i)S_n^*(t-x;x) = 0$

$$\begin{aligned} (ii)S_n^*((t-x)^2;x) &= \left[1 + \frac{sr(r-1)}{n}\right] \frac{x}{n} \left(\frac{n}{n+1} - x\right) \\ (iii)S_n^*((t-x)^3;x) &= \frac{2x^3}{n^2} \left[1 + \frac{sr(r^2-1)x^3}{n}\right] - \frac{3x^2}{n(n+1)} \left[1 + \frac{sr(r^2-1)x^2}{n}\right] \\ &+ \frac{x}{(n+1)^2} \left[1 + \frac{sr(r^2-1)x}{n}\right] \\ (iv)S_n^*((t-x)^4;x) &= \frac{x^4}{n^2} \left[3 - \frac{6}{n} + \frac{3(sr(r-1))^2}{n^2} - \frac{6sr(r^3-1)}{n^2}\right] - \frac{x^3}{n(n+1)} \left[6 - \frac{12}{n} \\ &+ \frac{6(sr(r-1))^2}{n^2} - \frac{12sr(r^3-1)}{n^2} + \frac{12sr(r-1)}{n}\right] + \frac{x^2}{(n+1)^2} \left[3 - \frac{7}{n} \\ &+ \frac{6sr(r-1)}{n} + \frac{3(sr(r-1))^2}{n^2} - \frac{7sr(r^3-1)}{n^2}\right] \\ &+ \frac{x}{(n+1)^3} \left[1 + \frac{sr(r^3-1)}{n}\right] \end{aligned}$$

$$(2.10)$$

Proof. From lemma 2.1 we get,

$$S_n^*(t-x;x) = S_n^*(t;x) - xS_n^*(1;x) = 0$$

$$S_n^*((t-x)^2;x) = S_n^*(t^2;x) - x^2 - 2xS_n^*(t-x;x)$$

$$= x^2 + \left[1 + \frac{sr(r-1)}{n}\right]\frac{x}{n}\left(\frac{n}{n+1} - x\right) - x^2$$

$$= \left[1 + \frac{sr(r-1)}{n}\right]\frac{x}{n}\left(\frac{n}{n+1} - x\right)$$

$$S_n^*((t-x)^3;x) = S_n^*(t^3;x) - 3x^2S_n^*(t^2;x) + 3xS_n^*(t;x) - x^3$$

$$= x^{3} \Big[\frac{(n-1)(n-2)}{n^{2}} + \frac{2sr(r^{2}-1)}{n^{3}} - \frac{3sr(r-1)}{n^{2}} \Big] + 3x^{2} \Big[\frac{(n-1)}{n(n+1)} \\ + \frac{sr(r-1)}{n(n+1)} - \frac{sr(r^{2}-1)}{n^{2}(n+1)} \Big] + \frac{x}{(n+1)^{2}} \Big[1 + \frac{sr(r^{2}-1)}{n} \Big] \\ - 3x \Big[x^{2} + \Big(1 + \frac{sr(r-1)}{n} \Big) \frac{x}{n} \Big(\frac{n}{n+1} - x \Big) \Big] + 3x^{3} - x^{3} \\ = \frac{2x^{3}}{n^{2}} \Big[1 + \frac{sr(r^{2}-1)x^{3}}{n} \Big] - \frac{3x^{2}}{n(n+1)} \Big[1 + \frac{sr(r^{2}-1)x^{2}}{n} \Big] \\ + \frac{x}{(n+1)^{2}} \Big[1 + \frac{sr(r^{2}-1)x}{n} \Big]$$

Similarly, from lemma (2.1), we get,

$$\begin{split} S_n^*((t-x)^4;x) &= S_n^*(t^4;x) - 4xS_n^*(t^3;x) + 6x^2S_n^*(t^2;x) - 4x^3S_n^*(t;x) + x^4 \\ &= \frac{x^4}{n^2} \Big[3 - \frac{6}{n} + \frac{3(sr(r-1))^2}{n^2} - \frac{6sr(r^3-1)}{n^2} \Big] - \frac{x^3}{n(n+1)} \Big[6 - \frac{12}{n} \\ &+ \frac{6(sr(r-1))^2}{n^2} - \frac{12sr(r^3-1)}{n^2} + \frac{12sr(r-1)}{n} \Big] + \frac{x^2}{(n+1)^2} \Big[3 - \frac{7}{n} \\ &+ \frac{6sr(r-1)}{n} + \frac{3(sr(r-1))^2}{n^2} - \frac{7sr(r^3-1)}{n^2} \Big] \\ &+ \frac{x}{(n+1)^3} \Big[1 + \frac{sr(r^3-1)}{n} \Big] \end{split}$$

Lemma2.3. For each $x \in [0, \frac{n}{n+1}]$, $n \in N$ and non-negative integers r,s satisfying the condition : 2sr < n, following relations hold,

(i)
$$S_n^*((t-x)^2;x) < \frac{r+1}{8n}$$

(*ii*)
$$\lim_{n \to \infty} n S_n^*((t-x)^2, x) = x(1-x)$$

(*iii*)
$$\lim_{n \to \infty} n^2 S_n^*((t-x)^4, x) = 3x^2(1-x)^2$$

Proof. We know that maximum value of $x\left(\frac{n}{n+1}-x\right)$ in the interval $\left[0,\frac{n}{n+1}\right]$, $n \in \mathbb{N}$ is $\frac{n^2}{4(n+1)^2}$.

Also r,s are non-negative integers satisfying the condition $2sr < n \Rightarrow sr < \frac{n}{2}$. So from lemma (2.2) we obtain,

$$\begin{split} S_n^*((t-x)^2;x) &\leq \Big[1 + \frac{sr(r-1)}{n}\Big]\frac{1}{n}\Big(\frac{n^2}{4(n+1)^2}\Big) \\ &\leq \frac{1}{4n}\Big[1 + \frac{sr(r-1)}{n}\Big] \\ &< \frac{1}{4n}\Big[1 + \frac{(r-1)}{2}\Big] \\ &= \frac{r+1}{8n} \end{split}$$

And,

$$nS_n^*((t-x)^2; x) = \left[1 + \frac{sr(r-1)}{n}\right] x \left(\frac{n}{n+1} - x\right)$$
$$\lim_{n \to \infty} nS_n^*((t-x)^2; x) = x(1-x)$$

Again from lemma (2.2),

n-

$$\begin{split} n^2 S_n^*((t-x)^4, x) &= x^4 \Big[3 - \frac{6}{n} + \frac{3(sr(r-1))^2}{n^2} - \frac{6sr(r^3-1)}{n^2} \Big] - 6\frac{x^3 n^2}{n(n+1)} \Big[1 - \frac{2}{n} \\ &+ \frac{(sr(r-1))^2}{n^2} - \frac{2sr(r^3-1)}{n^2} + \frac{2sr(r-1)}{n} \Big] + \frac{x^2 n^2}{(n+1)^2} \Big[3 - \frac{7}{n} \\ &+ \frac{6sr(r-1)}{n} + \frac{3(sr(r-1))^2}{n^2} - \frac{7sr(r^3-1)}{n^2} \Big] \\ &+ \frac{xn^2}{(n+1)^3} \Big[1 + \frac{sr(r^3-1)}{n} \Big] \end{split}$$

Therefore,

$$\lim_{n \to \infty} n^2 S_n^*((t-x)^4, x) = 3x^4 - 6x^3 + 3x^2 = 3x^2(1-x)^2$$

Main Result:-

In this section we give our main result regarding the convergence of the operator S_n^*f .

Theorem 3.1. If $f \in C\left[0, \frac{n}{n+1}\right]$, $n \in \mathbb{N}$; r and s are parameters which are non negative and satisfy the condition : 2sr < n, then $S_n^* f$ given by (1.4) converges uniformly to f on $\left[0, \frac{n}{n+1}\right]$.

Proof. From lemma (2.1) we see that,

$$\lim_{n \to \infty} (S_n^* e_j)(x) = x^j, \quad j = 0, 1, 2,$$

where $e_j(t) = t^j$.

Hence by means of Bohman-Korovkin theorem [2], we obtain the desired result.

A Voronovskaja-TypeTheorem

In this section we give aVoronovskaja-Type theorem for our operator.

Lemma4.1. Suppose that x_0 is a fixed point in $\left[0, \frac{n}{n+1}\right]$, $n \in \mathbb{N}$ and $\phi(t; x_0)$ is a given bounded function belonging to $C\left[0, \frac{n}{n+1}\right]$, such that

$$\lim_{t \to x_0} \varphi(t; x_0) = 0$$
$$\lim_{n \to \infty} S_n^*(\varphi(t; x_0); x_0) = 0. \tag{4.1}$$

then,

where $S_n^* f$ is given by (1.4).

Proof. By (1.4) we have for $n \in N$ and a fixed point $x_0 \in \left[0, \frac{n}{n+1}\right]$,

$$S_n^*(\varphi(t;x_0);x_0) = \sum_{k=0}^{n-sr} p_{n-sr,k}(x) \sum_{j=0}^{s} \left[p_{s,j}(x)\varphi\left(\frac{k+jr}{n+1},x_0\right) \right]$$
(4.2)

where r and s are parameters which are nonnegative and satisfy the condition : 2sr < n.

Choose $\epsilon > 0.$ Since $\varphi(\cdot; x_0) \in C[0, \frac{n}{n+1}]$, there exists a positive constant $\delta \equiv \delta(\epsilon)$ such that

$$|arphi(t;x_0)| < rac{\epsilon}{2}$$
, $if |t-x_0| < \delta, t \ge 0$

Also, since $\phi(\cdot;x_0)$ is bounded, therefore there exists a positive constant M such that $|\phi(t;x_0)| \le M$ for all t > 0. For n > 0 put,

$$A_n = \left\{ k \in N_0 : \left| \frac{k + jr}{n+1} - x_0 \right| < \delta \right\}$$

Then from (4.2) we get for every r, n, s \in N

$$\begin{aligned} \left| S_n^*(\varphi(t;x_0);r;x_0) \right| &\leq \sum_{k \in A_n} p_{n-sr,k}(x) \sum_{j \in A_n} \left[p_{s,j}(x)\varphi\left(\frac{k+jr}{n+1},x_0\right) \right] \\ &+ \sum_{k \notin A_n} p_{n-sr,k}(x) \sum_{j \notin A_n} \left[p_{s,j}(x)\varphi\left(\frac{k+jr}{n+1},x_0\right) \right] \\ &< \frac{\epsilon}{2} + S_1 \end{aligned}$$

$$(4.3)$$

Now we have,

$$S_1 \leq M \sum_{k \notin A_n} p_{n-sr,k}(x) \sum_{j \notin A_n} \left[p_{s,j}(x) \varphi\left(\frac{k+jr}{n+1}, x_0\right) \right]$$

Since $\left|\frac{k+jr}{n+1} - x_0\right| \ge \delta$, using lemma (2.3) we can write,

$$S_1 \leq M\delta^{-2} \sum_{k \notin A_n} p_{n-sr,k}(x) \sum_{j \notin A_n} \left[p_{s,j}(x) \left(\frac{k+jr}{n+1} - x_0 \right)^2 \right]$$

. 0

$$\leq M\delta^{-2}S_n^*((t-x_0)^2;x_0)$$

$$\leq M\delta^{-2}\left(\frac{r+1}{8n}\right)$$

It is obvious that for given $\epsilon > 0$, $\delta > 0$, M > 0 and ϵN_0 we can choose $n_0 \equiv n_0(\epsilon; \delta; M; r) \epsilon N$ such that for all natural numbers $n > n_0$

$$M\delta^{-2}\left(\frac{r+1}{8n}\right) < \frac{\epsilon}{2}$$

Here

$$S_1 < \frac{\epsilon}{2} \quad , for \ n > n_0 \tag{4.4}$$
$$\lim_{n \to \infty} S_n^*(\varphi(t; x_0); x_0) = 0..$$

Theorem 4.2. Let $f^2 \in C\left[0, \frac{n}{n+1}\right]$, then

$$\lim_{n \to \infty} n\{S_n^*(f;x) - f(x)\} = \frac{1}{2}x(1-x)f''(x).$$
(4.5)

Proof. For a fixed $x \in [0, \frac{n}{n+1}]$, by Taylor's formula we can write for every $t \in [0, \frac{n}{n+1}]$,

$$f(t) = f(x) + f'(x)(t-x) + \frac{1}{2}f''(x)(t-x)^2 + \psi(t;x)(t-x)^2,$$
(4.6)

Then by assumption $\psi(t;x) \in C[0,\frac{n}{n+1}]$ is a bounded function and $\lim_{t\to x} \psi(t;x) = 0$ From this we have for every $n \in N$,

$$S_n^*(f;x) - f(x) = f'(x)S_n^*(t-x;x) + \frac{1}{2}f''(x)S_n^*((t-x)^2;x) + S_n^*(\psi(t;x)(t-x)^2;x)$$
(4.7)

and using lemma (2.2) we have

$$n[S_n^*(f;x) - f(x)] = \frac{1}{2}f''(x)[nS_n^*((t-x)^2;x)] + nS_n^*(\psi(t;x)(t-x)^2;x)$$
(4.8)

By Cauchy-Schwarz inequality we get for $n \in N$

$$|nS_n^*(\psi(t;x)(t-x)^2;x)| \le \left\{S_n^*(\psi^2(t;x);x)\right\}^{\frac{1}{2}} \left\{n^2 S_n^*((t-x)^4;x)\right\}^{\frac{1}{2}}$$
(4.9)

Since $\lim_{t\to x} \psi(t;x) = 0$, therefore, $\lim_{t\to x} \psi^2(t;x) = 0$. Hence by lemma (4.1) we get,

$$\lim_{k \to \infty} S_n^*(\psi^2(t;x);x) = 0.$$
(4.10)

Hence by lemma (2.2) and eqs. (4.8),(4.10) we conclude,

$$\lim_{n \to \infty} n\{S_n^*(f;x) - f(x)\} = \frac{1}{2}x(1-x)f''(x).$$

References:-

- N. Deo, M. A. Noor and M. A. Siddiqui, On approximation by a class of new Bernstein type operators, J. Applied Mathematics and Computation, 201(2008), 604 - 612.
- [2] P.P. Korovkin, Linear operators and Approximation theory, Russian Monograph and Texts on AdvancedMathematics and Physics, vol.III, Gordon and Breach publishers, Inc., New York /Hindustan publishing Corp. (India), Delhi, (1960).
- [3] M. A. Siddiqui, R. R. Agrawal and N. Gupta, On a class of modified new Bernstein operators, Adv.Studies Contemp. Math., 24(2014), No. 1,97-107.
- [4] D.D.Stancu, A note on a multiparameter Bernstein type approximating operator, Mathematica(Cluj),26 (49), 1984, no. 2, 153 157.