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Ground object information extraction out of hyperspectral images refers
to the process of identifying and characterizing different materials or
objects present on the earth's exterior using hyperspectral imaging
technology. Hyperspectral imaging captures images in hundreds of
small and adjacent spectral bands, providing more detailed and accurate
information about the materials present in the scene. Hyperspectral data
is high-dimensional, which can make it challenging to visualize and
analyze. This can make it difficult to identify patterns or trends in the
data, and can also make it challenging to interpret the results of
classification algorithms. In this research work, collected raw images
(GIS images) are pre-processed via Augmented median filtering and
CLAHE approach. From the pre-processed images, the features like;
Haralick features, Normalized Difference Vegetation Index (NDVI),
Standardized Vegetation Index (SVI), correlation coefficient, Green-
NDVI (GNDVI), Simple Ratio (SR), and Red-edge Simple Ratio (SRre)
based features are extracted. Among the extracted features, the optimal
features are preferred utilizing a new hybrid optimization model stated
to as Wingsuit Spotted Hyena Optimizer (WSHO) model. This WSHO
model is the conceptual blend of standard Wingsuit Flying Search
(WFS) and Spotted Hyena Optimizer (SHO) Mineral Exploration phase
is modelled with a three-fold-deep-learning-classifiers framework
(proposed). The threefold-deep-learning-classifiers framework
encapsulates the Support Vector Machine (SVM), Random Forest (RF),
and modified Bi-LSTM. SVM and RF are trained with the selected
optimal features acquired from WSHO. The outcome from SVM and
RF is fed as input to Modified Bi-LSTM. To further enhance the
detection accuracy, the loss function of Bi-LSTM is modified. The
proposed model is implemented by PYTHON and validated in terms of
various performance metrics.
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Introduction:-
Ground remote sensing technology also encompasses the employment of numerous techniques to acquire detailed
information of nearly all aspects concerning earth system that includes its status and occurrences to study the laws
that govern it [1]. Hyperspectral sensing technology is one of the primaries means of earth observation technology
or sometimes called as eyes for humans to venture out-for space exploration. The ground satellite orbit height is
about 565 meters and the flight height of remote sensing aerial photography aircraft is about 10 km. 448 miles of
airtime would have been needed for real-time collection of abundance data [2]. It should be noted that the scope of
human examination in the extent of spectrum has expanded, and the structural point of data capturing has risen as
hyperspectral image sensing earth surveillance technology became progressively established during the 1970. It has
applied widely in agriculture, mining, military, water and soil conservation and the protection of the environment.

On the Earth there are a lot of regions with very complex environmental conditions; there are deserts and bogs, high
mountains which are almost difficult for humans to access. Moreover, other methods of remote sensing, especially
thermosphere ones, are faster and more effective in terms of data acquisition when it is impossible to conduct
observations on the Earth’s surface. Thermal infrared remote sensing shows the characteristic of higher spectral
determination and higher spatial resolution, while the optical remote sensing holds a significant place in the
development of remote sensing technologies [3][4]. Hyperspectral remote sensing satellites may capture images in
several bands where each band possesses its characteristics. They work at a higher VNB resolution that is more
readable, and are able to distinguish plants and water sources in the near-IR; whereas in the low-wave IR they are
less sensitive to settings and in the thermal-IR they are useful for exterior humidity measurements [5].
Hyperspectral remote sensing has evolved into one of the key study paths in the field of remote sensing due to the
ongoing increase of sensor spectral resolution and the broadening of individuals awareness of the spectral properties
of ground items [6]. It blends spectroscopy technology with imaging technology. For the created remote sensing
data to be brightly characterized by "image cubes," it disperses each spatial pixel even though imaging the spatial
attributes of the target into tens or still hundreds of small bands for ongoing spectral scope [7][8][9].The acquired
image is richer in spatial, emission, and spectral triple specifics than standard remote sensing techniques, and it is
better able to differentiate between ground objects. Getting higher-resolution photos is the basic idea behind ground
feature extraction. Technology assistance for quick and right capture of shifts in mining regions is made possible by
the accelerated growth of remote sensing techniques [10]. To collect information about ground objects,
hyperspectral remote sensing fuses spectral data with dimensional images. This enables the inclusion of maps and
offers a persistent specialized foundation for humans to comprehend and change the universe. Compared to
multispectral photos, hyperspectral images have a better resolution.

Image data acquiring through RS satellites is sensitive to weather, terrains, and other objectives; thus, it becomes
almost impossible to monitor feature news of the objects on the ground within a small region especially in mining
sites characterized with complex relief. Efficient approaches to mining ground material are being designed because
of the enhancement in deep learning (DL) technology and speed of computers. It has been earlier observed in
[11][12] that DL-based ground object information extraction is more accurate. Also, self-learning from the network
of ground object properties reduces the amount of manual work and improves efficiency. In this case, temperature
from thermal infrared hyperspectral data is and used as the classification criterion for the Jiaozuo Jiulishan mine
situated in Jiaozuo City, China. The Convolutional Neural Network (CNN) under the DL is then applied to extract
the ground characteristics in the mining area. This network has stronger generalization ability and higher recognition
genuineness, which can be used to rapidly identify the ground characteristics of the mining area [13][14][15]. To
ensure a shortage of a labeled sample when it comes to the training of the network model, the creation is extended
whereby labeled data of other classifications from other datasets are obtained.

Motivation
 Hyperspectral imaging (HSI) is an efficient remote sensing technology, offering a wealth of spectral

data across a broad range of wavelengths. This potential has inspired the use of HSI to detect and
identify various ground objects. However, several challenges hinder the effective extraction of ground
object information from hyperspectral images. However, hyperspectral data is characterized by high
dimensionality and high volume, which creates storage, processing, and analysis problems. Heires
identifies those conventional approaches can be highly ineffective when processing such intricate data.

 Usually, hyperspectral images consist of a high number of spectral bands, and a considerable portion of
bands may be noisy or non-informative about the classification issue at hand. This redundancy may
cause reduced accuracy of the classification and an increase in the computational load. Need for
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Accurate Classification: The correct classification of ground objects is crucial for various applications,
including monitoring environmental changes, agricultural productivity, mineral exploration, and
military surveillance.

 However, previously used classification procedures have shown to be ineffective regarding precision
and solidity, underscoring the importance of your work in these fields. Optimization of Feature
Selection, effective feature selection is the primary condition that brings higher classification
performance. However, selecting the best subset of features for the hyperspectral data is still difficult
due to the large search space.

Main Contribution
 The new Wingsuit Spotted-Hyena Optimizer (WSHO) algorithm integrates the benefits of the Wingsuit

Flying Search (WFS) and Spotted Hyena Optimizer (SHO) algorithms to select the best number of
features from hyperspectral data.

 This approach to feature selection affirms the benefits mentioned above and combines the intensive
approaches to feature selection. The set of optimal features is employed to train state-of-the-art
classifiers, such as Support Vector Machine (SVM) and Random Forest (RF).

 These classifiers' results are, in turn, combined with an improved version of the Bi-LSTM network to
enhance the classification results. The described model is developed in Python, and based on the results
of testing with the use of the most significant parameters and indices, it is stated that the classification
and prediction problems' solution with the help of the proposed model allows for providing higher
accuracy, better performance, and less sensitivity to noise as compared with traditional approaches and
tools.

 To illustrate the efficiency of the proposed model, it is implemented as a case of mineral exploration for
the classification of different kinds of minerals extracted from hyperspectral images. This application
emphasizes the analytical use of the model in solving real-life problems.

Research Questions
1). How the Wingsuit-Hyena Optimizer system can be used in improving the selecting of optimal features from the
hyperspectral images compared to ancient characteristics of the methods selected.
2). What the particular modifications to the Bi-LSTM loss function should be for the enhancement of detection
accuracy of the model proposed?
How should the proposed methodology function in the real-world application involving performance, and sensitivity
metrics?
3). What are the core challenges in the extraction of object information from the hyperspectral images in the
surrounding with complexity of terrains and how does the proposed methodology explore the outlined challenges?
4). How should the proposed model help in comparing with the existing hyperspectral images classification models
in terms of computational efficiency and classification accuracy?

Literature Review:-
The developments in hyperspectral sensing as well as analysis over the years have proved to be very successful in
many areas. Maximilian Brell et al. (2019) extended Hyperspectral Point Cloud (HSPC) by including preliminary
pulse return information from ALS and suggested its feasibility for environmental and landcover classification [16].
Zhuo Zheng et al. (2020) proposed a hyper-scale object detection framework called HyNet based on a new block,
called HyBlock, to optimize the crucial MSR images [17]. In this regard, based on the study by Radhesyam Vaddi et
al. (2020), this research recommends the ONR approach for unsupervised band selection, alongside the SPRF and
CNN for efficient data classification [18].

Street picture analysis and main studies on pictures in urban environment were carried out by Jianya GONG et al
(2019) to highlight the methods from fundamental sections to more refined aspects and possible advancements in
urban planning and large quantities of data [19]. Yi Liu et al., (2020) presented an algorithm linking the sparse
illustration with the spectral, spatial and temporal factor of the RS images focusing on temporal characteristics and a
model for sparse representation of space-spectrum-time [20].

A. Gokila Vani et al. (2020) involves is the segmentation of the surface characteristics in the form of images captured
through satellite wherein the researchers’ combined developments in hyperspectral sensors to capture data from
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several hundred bands [21]. Muhammad Mahtab Alam et al. (2016) described a WBANs with dynamic MAC with
latency and energy efficient protocol for randomly varying traffic load [22].

There is a process of hyperspectral image classification as Zhang et al. (2022) called nested transformers (NesT) that
helps in better extraction of required information and to use on four commonly used hyperspectral databases [23].
Renlong Hang et al. (2019) proposed an HSI grading model based on attention-aided CNN, which include two
subnetworks, spectral attention, and spatial attention [24]. Yanhui Guo et al. (2018) presented a novel structure based
on CNN to implement the deep feature extraction and spectral-spatial classification for the multiscale spatial
information [25-29].

The main contributions of this research include:
• Added augmented median filtering as the pre-processing method extension.
• Applying the methodology based on the Wingsuit Spotted-Hyena Optimizer for the feature selection.
• Utilizing Modified Bi-LSTM on the basis of outputs of high efficiency from the SVM and RF classifiers.

Section 3 describes the methodology of ground object information extraction from hyperspectral images and Section
4 contains the findings obtained with the help of the proposed model. Section five of the paper draws the conclusion.

Muhammad mahtab alam et al. [22] have proposed a wireless body area network (WBANs) where the wake-up
schedule of the nodes has been changed in 2016. The developed protocol for dynamic MACwas latency-energy-
optimized and traffic-aware. The said protocol was developed based on an adaptive algorithm that would allow the
sensor nodes to have a good control of its wake up and sleep patterns depending on the traffic that is static and
dynamic in nature.

Wang & Gan [3] presented a HSI classification process using nested transformers. The block aggregation component
was applied by NesT to gather the edge information across patches and facilitate the outsiders’ information exchange
across blocks and enhance the overall information acquirement. The NesT was used for the characterization of the
HSI for the first attempt. Four datasets in hyperspectral are selected which are most commonly used.

Renlong Hang et al. [24] have introduced a hyperspectral image grade in 2019 with the help of the attention-aided
CNN model. To promote spectral and spatial classifications, two subnetworks are proposed: the spectral attention
subnetwork and the spatial attention subnetwork. Based on the conventional CNN model, both of them contain
attention modules; Specifically, support networks that focus on more discriminative channels are integrated into CNN
architecture. In 2018, Yanhui Guo et al. [25] have used a High-efficiency deep feature extraction and the spectral-
spatial HSI classification approach that can probably develop the multiscale spatial feature obtained by the guided
filter. This was the initial demonstration of CNN in learning of spectral and multi-scale spatial information and was
the suggested technique. Hence when it is so compared with its commercial rivals.

The following are some of the objectives that this research seeks to achieve with regards to the gaps that were defined
when undertaking this research:

To begin with, it has a concise statement of motivation and main contribution; a rigorous presentation which has
contributed the to the specification of an actuality hybrid model concerning ripping off the ground object information
from hyperspectral images based on the WSHO and deep learning approaches. Secondly, we discussed the changes
made to the Bi-LSTM and the research proposed hybrid model, so that readers can understand the difference and how
our work is better than the base models. This involved changes in the loss function and the incorporation of outputs of
Support Vector Machine (SVM) as well as Random Forest (RF) into the Bi-LSTM path. Thirdly, to alleviate the
previously mentioned lack of information about the dataset samples used, we stated and explained the numbers of
samples in training, testing, and validation datasets and the selected dataset splitting approach. It was quite important
in the process of verifying the reliability and stability of the developed model. Below is the code that shows the
computation and comparison of Performance Metrics Precision, Sensitivity, Specificity, F-Measure, MCC, NPV, FPR,
FNR in WFS, SHO, SVM, Bi-LSTM, and the proposed model. This approach guarantees: elaboration of the rationale
for each contribution, clear demonstration of the introduced modifications to the model, and scrupulous description of
the dataset’s handling, thereby increasing the comprehensibility and effectiveness of the research conducted.

Research Gaps



ISSN: 2320-5407 Int. J. Adv. Res. 12(08), 359-381

363

Table 1:- Shows the research gaps of various existing work.
AUTHOR AIM METHODOLOGY DRAWBACK
Maximilian
Brell et al.
[16]

Combining airborne laser
scanning with hyperspectral
imaging sensors to improve the
extraction of object-based
information

Hyper structural point
cloud

It requires a high level of
technical expertise

Zhuo
Zheng et al.
[17]

hyper-scale object detection
network framework

feature pyramid network High computational costs

Radhesyam
Vaddi et al.
[18]

To classify hyperspectral
images.

Optimal neighboring
reconstruction

May not be effectively
distinguish between meaningful
structures and noise

Jianya
GONG et

al. [19]

Improvements in the extraction
of urban information from
highresolution remote sensing
images

High-resolution remote
sensing imagery

Problems such as spectral
heterogeneity, and disparity in
HR images

YI LIU et al.
[20]

Remote Sensing Image
Information Extraction, and
Target Recognition

image extraction and
recognition network

difficult to develop.

A.Gokila
Vani et al.[21]

Classification of
Hyperspectral images using
SVM approach

Support vector machine ultra-high dimensionality of
data

Muhammad
mahtab
alam et al.
[22]

A Heuristic Self-
Adaptive Medium Access
Control for WBAN
Systems with Limited
Resources

Wireless Body Area
Networks

low storage capacity

Zitong
Zhang et al.
[23]

Recursive Generators for
Classifying Hyperspectral
Images

Conventional machine
learning and DL

With spectrum, it is impossible
to attain good performance.

Renlong
Hang et al.
[24]

Classification of
Hyperspectral Images
Using Attention-Aided
CNNs

Hyperspectral images some domains can impact the
performance of the
model

Yanhui
Guo et al.
[25]

classification of spectral
information features.

Spectral-Spatial
Hyperspectral
Image

wide gap in expectations

Problem Statements Section
Problem Statements
 Inefficient Real-Time Data Collection in Remote Sensing:
Ground remote sensing technologies, despite their advancements, face significant challenges in acquiring real-time,
detailed data due to limitations in satellite and aerial photography capabilities. Current systems require extensive
flight times and operational costs to collect comprehensive data over large areas.
 Limited Scope of Hyperspectral Imaging in Complex Environments:
The effectiveness of hyperspectral imaging is constrained in environments with complex terrains such as deserts,
mountains, and inaccessible regions. This limitation hinders the comprehensive observation and monitoring of
Earth's diverse environmental conditions using traditional remote sensing techniques.
 Integration Challenges of Thermal Infrared Remote Sensing:
While thermal infrared remote sensing offers higher spectral and spatial resolutions compared to optical methods, its
integration with existing remote sensing technologies poses challenges. These challenges include optimizing data
acquisition efficiency and enhancing the applicability of thermal infrared data for environmental monitoring and
resource management.
 Accuracy and Efficiency Gaps in Ground Object Information Extraction:
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The extraction of ground object information from remote sensing satellite images remains inaccurate and inefficient,
particularly in mining sites characterized by complex terrains and environmental conditions. There is a critical need
to develop more efficient approaches utilizing deep learning technologies to enhance the accuracy and speed of
ground object identification and classification.
 Data Labeling and Training Challenges in Deep Learning Models:
The training of deep learning models for ground object classification faces challenges related to the availability and
quality of labeled data. Current approaches are limited by the shortage of labeled samples specific to mining area
characteristics, necessitating the extension of data sources and augmentation techniques to improve model training
and generalization.

Proposed Methodology:-
Economic growth is influenced by the mining of coal and its use. In this regard, research is done on feature
information extraction in the region to support production deployment and arrangement precisely and effectively in
the mining area. Figure 1 shows the overall architecture of the proposed work.

Figure 1:- Overall design of the proposed methodology.

Pre-processing:
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The collected raw images (GIS images) is pre-processed via Augmented median filtering and CLAHE
approach

Feature Extraction:
Then, from the pre-processed images, the features like Haralick features, Normalized Difference Vegetation
Index (NDVI), Standardized Vegetation Index (SVI), correlation coefficient, Green-NDVI (GNDVI),
Simple Ratio (SR), and Red-edge Simple Ratio (SRre) based features is extracted.

Optimal feature selection-
Among the extracted features, the optimal features is selected using a new hybrid optimization model
referred as Wingsuit Spotted-Hyena Optimizer (WSHO) model (proposed). This WSHO model is the
conceptual blend of standard Wingsuit Flying Search (WFS) [23] and Spotted Hyena Optimizer (SHO) [24],
respectively.

Mineral Exploration-
This phase is modelled with a three-fold-deep-learning-classifiers framework (proposed). The three-fold-
deep-learning-classifiers framework encapsulates the SVM, RF and modified Bi-LSTM (proposed). The
SVM and RF is trained with the selected optimal features acquired from WSHO. The outcome from SVM
and RF is fed as input to Modified Bi-LSTM. To further enhance the detection accuracy, the loss function of
Bi-LSTM is modified.

Pre-processing
In this research work, Pre-processing is collected using raw images and it is processed using Improved median
filtering(proposed) and CLAHE approach. Figure 2 shows the processes of Pre-processing.

Figure 2:- Pre-processing phase.

Augmented median filtering
Augmented median filtering uses a variable window size based on the quality of the image data within the window.
The window size is increased if the variation within the window exceeds a certain threshold, and it is decreased if
the variation is below another threshold.

Mathematically, the Augmented median filter can be defined as follows:
Let (�, �) be the input image, and � (�, �) be the output image after filtering. Let (�, �) be the window centered at
pixel (�, �) in the input image, were
� = � − [(� − 1)/2] �� � + [(� − 1)/2],



ISSN: 2320-5407 Int. J. Adv. Res. 12(08), 359-381

366

� =� − [(� − 1)/2] �� � + [(� − 1)/2]. (1)
Let be the size of the window, and ���� and Zmax be the smallest and maximum intensity rates within the
window.

Then the adaptive median filter is defined as follows:
Step 1: If �<���, set �(�, �) = Zmed, the median value of the pixels within the window.
Step 2: If ����<Zmed< Zmax set (�,�) = �(�, �).
Step 3: If �>����, ��� (�, �) = ����.
Step 4: If ����<= �<= ���� and ����<= ����������>= ����, increase the window size by 2 and repeat the
above steps.

If the window size exceeds a predefined maximum size, set (�, �) = ���� and move to the next pixel.

This approach allows for the preservation of important image details while removing noise and artifacts. The use of
variable window sizes based on the attributes of the image data within the window ensures that important details are
not lost during the filtering process.

CLAHE approach
The result of combining this limited contrast approach with the AHE results is the CLAHE, also known as the
Contrast Limited Adaptive Histogram. Better images are mainly made when comparing interactive contrast
enhancement to Adaptive Histogram Equalization (AHE). It served as proof that adding more shadows to the
original image could lead to more effective results. It was noted that for an image with a constrained range of grey
levels, AHE does not yield satisfactory results. Noise is decreased and improved images are produced by restricting
contrast enhancement. The disadvantage of AHE is that it makes the image's noise and image quality worse. As a
way to advance, the CLAHE was recommended. This method improves the image while lowering noise. According
to the CLAHE strategy, First, the image is distributed into a number of nearly identical, non-overlapping regions.
The histogram for everywhere is then calculated. The desired limit for contrast expansion is then used to determine a
clip limit for clipping histograms. The height of each histogram is then readjusted to keep it within the clip limit. Eq.
(2) is used to calculate the clip limit .

(2)

Where is a clip factor, if clip factor equivalent to zero the clip limit becomes exactly equal to ,
additionally, if clip limit equals 100, the highest permitted slope is ����. The Cumulative Distribution
Functions (CDF) of the resulting contrast limited histograms are then computed for use in grayscale mapping.
The pixels are designed by linearly merging the results of the mappings of the four closest sections.

Feature Extraction
In this research work, the pre-processed images are fed up into feature extraction.

Feature extraction is done using Haralick Features, SR, NDVI, SVI, Correlation Coefficient, Green-NDVI (GNDVI)
and Red-Edge Simple Ratio. Figure 3 shows the processes of Feature Extraction.
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Figure 3:- Feature Extraction.

Haralick Features
Grey Level Co- Occurrence Matrix (GLCM) is a potent method for quantifying texture features. Consider a
rectangular image that needs to be analysed, with �� columns and �� rows. Assume that each pixel's grey
level has been calculated to �� tiers. Let, ��=
1, 2, , �� be the columns, ��= 1,2,… , �� be the rows, and =0 ,1, 2…, �� be the set of �� quantized grey levels.
The texture-context information is stated by the matrix of relative frequencies �i,j with two nearby pixels
disconnected by deposition � and angle θ. The subsequent equation is used to calculate the GLCM that is
mathematically shown in Eq. (3)

�(�,�, �, �) = #{(�1,�1)(�2,�2)|�(�1,�1) = �,�(�2,�2) = �,|(�1,�2) − (�2,�2)| =
�, ⇂ ((�, �1),(�2, �2)) = �} (3)
where is the number of instances inwardly the window sizes where a pixel pair's intensity level variations
from to , the first pixel's location is (�1,�1) the second pixel's location is (�2,�2) is the span between the
pixel pair, and is the angle separating certain two pixels. The defined co-occurrence matrix is non-
symmetric. Only angles up to 180° must be considered when the GLCM is measured with symmetry. A
symmetric co-occurrence matrix is estimated by the look �(�, �, �, �)′ = (�(�, �, �, �) + �(�,�,�, �)��)/2
where �(�, �, �, �)�� is the transpose of �(�, �, �, �). Probability estimates are collected by dividing each
entry in �(�, �, �, �)′ by the sum of all practicable intensity changes (���∗���) with the distance and
management i.e. ∑ # ������, �, � Thus, a normalized GLCM is obtained by the Eq. (4).

(4)
where, �(�, �, �, �)� is normalized GLCM. 2 ∗ ∑ # ������, �, � is constant and in order to elude division
on the FPGA, the Eq. (4). can be rewritten as follows. Division uses more appliances resources and can
reduce the functioning of the FPGA design. The mathematical model is shown in Eq. (5)

(�,�, �, �)�= (�(�, �, �, �) + ���(�, �, �, �)) ∗�(�, �) (5)
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NDVI

(6)
The NDVI is expressed mathematically in Eq. (6). The normalized difference vegetation index is ����. With sensors
in the ��� and ��� regions, ��� and ��� are spectral radiance dimensions. The amount of energy flux that a sensor
can detect is called radiation. Radiance values are frequently resizable to numeric numbers as unsigned 6-bit, 7-bit,
8-bit, or 12-bit integers. Reflectance is a unit less measurement of how much radiation an object reflects compared
to how much radiation strikes it. No matter whether radiance, reflectance, or DN are used as inputs, NDVI range
from 1 to 1. Its ethics are typically negative for vegetation, such as crops, shrubs, grasses, and forests, and close to
zero for surfaces made of rocks, sand, or concrete.To put it another way, higher NDVI values have stronger
implications for lush vegetation. To lessen the impact of scattered radiation in the atmosphere, reflectance is used.
Shorter wavelengths scatter more strongly than longer wavelengths according to the Rayleigh scattering theory of
strong wavelength dependence on dispersion in the air, which has an impact on NDVI calculations. The relative
differences in spectral responses of various objects are what cause the variations in NDVI values between them.
Consequently, Eq. (7) can be modified as follows.

(7)
where ���� is normalized dissimilarity vegetation index. is the rate of ��� to ���, and is generally cited as
to ratio vegetation index? Eq. (7)is more exact for explaining NDVI behavior patterns due to separate
responses of ��� and Red to atmosphere and stress.

SVI
The Z-score was used to determine the Standard Deviation (SD) from the mean in the unit of the SD, which was
measured from the NDVI of each pixel in each season, because the SVI trusted on a z-score in each pixel of the
data from the Terra/MODIS. The analysis of the z-score is depicted in Eq. (8).

(8)

Were,
���� = the year s pixel �’s � value for week , �������= the per week NDVI value for pixel through week
for annum . ���� ̅̅̅̅̅̅̅��= the mean NDVI for pixel within week above years ��� = the SD of pixel amid
week over years.

According to Eq. (8), ���� was the hypothesis value in order to correspond with the standard normal distribution for
the test of the hypothesis from any pixel
in any season for the interval of 2014-2016. SVI analysis could be done as shown in Eq. (9)

(9)
Were,
���� = the year s pixel ’s value for week .
�����= highest value for pixel when week and �����= minimum of
value for pixel during week
Eq. (9) display of the probability of each pixel as the SVI.

Correlation Coefficient
The Pearson Correlation Coefficient (PCC) is a popular statistic for determining how much two image matrices R
and G are linearly correlated.

GNDVI
Green Normalized Difference Vegetation Index. With the Exception of Measuring the Green Spectrum in the
Range of 0.54 To 0.57 Microns Rather Than the Red Spectrum, it is Comparable to NDVI. According to
Multispectral Data That Lacks an Extreme Red Channel,
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This Serves as a Measure of the Photosynthetic Activity of the Vegetation Cover. It is More

Responsive to Chlorophyll Concentration Compared to the NDVI Index. When Evaluating Aged and Depressed
Vegetation, it is Used. The mathematical model of GNDVI is shown in Eq. (10)

(10)

SR
The SR is also well-known and frequently employed. It is specified as the ratio of red-light absorption to NIR light
scattering. Mathematical model of SR is shown in Eq. (11)

(11)

Red-Edge Simple Ratio (SRre)
An indicator of number of both healthy and distressed plants is the SRre method. The amount of light was
spreading in the NIR and red-edge groups determines how much the effects of topography and atmosphere
are reduced. The mathematical model of Red-Edge Simple Ratio is shown in Eq. (12).

(12)
Optimal feature selection
In this research work, the extracted images are fed up into optimal feature selection. Optimal feature selection is
done using Wingsuit Spotted Hyena Optimizer (WSHO). Figure 4 shows the process of optimal feature selection
phase.

Figure 4:- Optimal feature selection phase.

Wingsuit Flying Search
The wingsuit flying search is implied with spotted Hyena Optimizer.
Step 1: Compute the spotted hyenas population.
Step 2: Determine the starting points of SHO.
Step 3: In this research work, calculate fitness function as given as fit=min (RMSE). Step 4: Find the most
effective search agent in the available search space using the encircling prey phase.
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The target prey is thought to be the best option at this time because the search space is unknown. Hyenas in the area
that are searching for the target attempt to update their positions relative to it. This behavior can be mathematically
expressed in Eq. (13) and Eq. (14)

(13)

(14)

Here, is the current iteration, and are the coefficient vectors, and

are the position vectors of the prey and spotted hyena and the is the?
separation within the spotted hyena and prey. However, (. ) and (||) are the multiplication of vector and absolute
value correspondingly. Eq. (15) - (17) shows the calculation for the vectors

.

(15)

(16)

(17)

and represents the random vectors. A
dissimilar number of locations can be attained by varying the values of and vector.
Step 5: Specify the group of Optimal solutions based on the hunting phase of SHO model.

When hunting, hyenas typically rely on the information given by reliable associates and their propensity for tracking
prey. The most effective search agent is the hyena that has the most knowledge of the location of its prey. In order
to update their positions, additional search agents form a group and follow the best search agent. The mathematical
model is shown in Eq.
(18) – Eq. (20)

(18)

(19)

(20)

Where and the positions of the first-best spotted hyena and other spotted hyenas, respectively. The count of
spotted hyenas is indicated by which is determined as in Eq. (21)

(21)

The total number of solutions after adding is symbolized by ��� and is a random vector in the extend [0.5, 1

and is a collection of N optimal solutions.

Step 6: Generate the neighborhood points based on WFS.
Since it is a priori the ideal strategy to deal with an unknown environment, the flier really starts out placed above
the center of the Earth surface of interest. Having a point that considers the flyer's present location is advantageous.
This location, called the centroid by WFS, is identified as mathematical in Eq. (22)

(22)

Where the columns are signified as �(�) and indicates pattern matrix in
all points. Its dimensions are � × ((�)+ �), and its ith column is indicated by �(�) (�).
For point x, the weighting factor ( ) is calculated as mathematical in Eq. (23)
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Step 7: Exploitation
The value of is gradually dropped from 5 to 0 at the time of exploitation. Additionally, the variation in is also

applied. The method allows the hyenas to attack the victim when the value becomes . It can be stated in
Eq. (24)

(24)

Where is the best position record.
Step 8: In a given search space, determine if any search agents cross the boundary and make necessary adjustments.

Step 9: Create a value for the updated search agent fitness and update the if a better option exists than the
previous best option.
Step 10: Update on the spotted hyena pack �ℎ to revised fitness value for search agents.
Step 11: When the stopping criterion is met, algorithm come to a stop. If not, proceed to Step 5.
Step 12: Once the stopping criteria have been met, give the best optimal solution that has been found so far.

Mineral Exploration
In this research work, Optimal feature selection is fed up to mineral exploration phase. Mineral Exploration is
processed through SVM and RF via Modified Bi-LSTM. Figure 5 shows the mineral exploration phase.

Figure 5:- Phases of Mineral Exploration.

Support Vector Machine (SVM)
SVM frequently used for regression analysis and classification. This classifier's main idea is to identify the negative
samples and choose the best way to partition the positive samples. Training samples are used to develop trustworthy
models, and both positive and negative examples are taken into account by the space points. The many types of
points are represented by various forms and colours. There is a maximum of diversity with the assorted sample
classes. Kernel function automatically converts the low-dimensional input features to features in a higher feature
space.

Random Forest (RF)
A classification technique called Random Forest combines many tree predictors in such a way that each tree is
dependent on a value of an arbitrarily selected vector that is equally circulated within all the trees in the forest.
Since each tree is developed using the training set and random vector , the RF creates a random vector �� that is
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unrelated from the earlier random vectors �� and dispersed to entire trees. This produces a group of tree-
structured classifiers {ℎ (�, ��), � = 1, … . } at input vector . The generalization error in the RF is mathematical
shown in Eq. (25)
��∗= �,� (�� (�, �) < 0) (25)
where margin function, ��, indicates how much the norm quantity of votes at random vectors for the right output
outdo the average vote for any other output and subscripts and are random vectors that denote the probability is
over the �,� space.

Highway-Bi-LSTM

Figure 6:- Highway Bi-LSTM.

In a Highway-Bi-LSTM, highway layers are added to the standard Bi-LSTM architecture. The highway
layer allows the network to learn when to carry information through the network and when to bypass it.
Mathematically, a Highway layer can be defined as follows in Eq. (26) and Eq. (27).
� = (�,��) \���� �(�,��) + � \���� (1 − �(�,��)) (26)
� = � (�,��) ⋅ (�,� � ) + � ⋅ (1 − �(�,� � )) (27)
Where is the input to the layer, is a non-linear transform function, is a transform gate function, and �� and
�� are the learnable weight parameters of the layer. The non-linear transform function takes the input and
applies a non-linear activation function (e.g., ReLU) to it. This allows the layer to learn complex representations of
the input. The transform gate function takes the input � and applies a sigmoid activation function to it. This
function outputs a value amongst 0 & 1that represents the proportion of input that is carried through the layer (i.e.,
the "transform" part of the layer). The bypass gate (1 − (�, ��) calculates the proportion of the input that is
"bypassed" through the layer unchanged. This ensures that important features are not lost during the transformation
process. The output y of the Highway layer is a combination of the transformed input and the bypassed input, with
the proportion of each determined by the transform gate. Figure 6 shows the Highway Bi-LSTM representation.
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Results and Discussion:-
The proposed model is implemented using PYTHON. The proposed model is analysed in terms of MCC, NPV,
Sensitivity, recall, precision, specificity, F- score, FPR, FNR and accuracy.
 True Positive (TP) is a measure of how many positive class samples that correctly predicted.
 True Negative (TN) denotes the number of negative class samples that the algorithm correctly predicted.
 False Positive (FP) is a assess of how many samples from the opposing class that the model incorrectly

predicted.
 False Negative (FN) suggests how many positive classes tries the algorithm predicted improperly.

Accuracy
The ratio of correct predictions to total predictions makes up the accuracy metric, one of the easiest
Classification metrics to implement. Eq. (28) is the accuracy formula's mathematical representation.

(28)

Precision
The proportion of positive predictions that were accurate is determined by precision. It can be calculated as
the True Positive, or the proportion of positive predictions that actually come true. The mathematical model
is shown in Eq. (29).

(29)

Sensitivity
The total positives divided by the proportion of actual positive forecasts yields the sensitivity value. The
mathematical model is shown in Eq. (30).

(30)

Specificity
The percentage of accurately predicted negative outcomes over all negative outcomes is known as specificity. The
formula for specificity is mathematically shown in Eq. (31).

(31)

F-Measure
It is computed as harmonic mean of both precision and recall, giving each variable equal weight. The formula
for F-Measure is mathematically shown in Eq. (32).

(32)

MCC
MCC is a trustworthy metric for evaluating the effectiveness of binary classifiers because it considers TP, TN, FN,
and FP. MCC actually measures how closely the predictor and the actual labels are correlated. The formula for
MCC is mathematically shown in Eq. (33).

(33)

NPV
A statistical measure known as Negative Predictive Value (NPV) assesses the reliability of a negative test result in a
population of people who have an individual condition. It is considered by parting the total number of people
without the condition by the count of true negative results. NPV is used to assess the effectiveness of detection. The
formula for NPV is mathematically shown in Eq. (34).
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(34)

FPR
The false positive rate is calculated by division the number of negative events that were inadvertently
characterized as positive by the total sum of negative events. Formula for FPR is mathematically shown in
Eqn. (35).

(35)

FNR
It is possible for a test to miss detecting a true positive, which is familiar as the false negative rate or "miss rate."
The formula for FNR is mathematically shown in Eq. (36).

(36)

Table 2:- Performance Metrics of proposed and existing methodology.
WFS SHO SVM Bi-LSTM Proposed

Accuracy 0.823974 0.838001 0.863093 0.831828 0.935071
Precision 0.789270 0.879402 0.855999 0.824981 0.927374
Sensitivity 0.866078 0.793823 0.870361 0.838823 0.942934
Specificity 0.782427 0.881594 0.855922 0.824926 0.927312
F-Measure 0.799202 0.809898 0.836210 0.805910 0.905936
MCC 0.829492 0.829906 0.901164 0.874601 0.983152
NPV 0.865542 0.804355 0.870331 0.838814 0.942923
FPR 0.024722 0.020224 0.026359 0.021711 0.020501
FNR 0.006623 0.004187 0.010017 0.003805 0.003593
The results in Table 2 shows the performance metrics of five different models: WFS, SHO, SVM, Bi-LSTM, and a
proposed model. Accuracy of 0.935071 is achieved, indicating that it had the highest number of correct predictions.
The proposed had highest precision of 0.927374, indicating that it had a high proportion of correct positive
predictions. The proposed model achieved the highest sensitivity of 0.942934, indicating that it correctly identified
the highest number of actual positives. The proposed model had a specificity of 0.927312, indicating that it correctly
identified a high proportion of actual negatives. F-measure of 0.905936, indicating that it had the best balance
between precision and sensitivity. The proposed model achieved the highest MCC of 0.983152, indicating a strong
correlation between the predicted and actual classifications. NPV of 0.942923 of proposed, indicating that it
correctly identified a high proportion of actual negatives among all predicted negatives. The proposed model had a
relatively low FPR of 0.020501, indicating that it had a low proportion of false positives. The proposed model had
the lowest FNR of 0.003593, indicating that it had the lowest proportion of false negatives. Overall, the proposed
model performed significantly better than the other four models, achieving the highest values in most performance
metrics. It achieved high accuracy, precision, sensitivity, specificity, F-measure, MCC, NPV, and low FPR and FNR
values. Therefore, the proposed is the best among the five for the given task.
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Figure 7:- Accuracy.
Figure 7 shows the accuracy analysis. The suggested scheme acquired the top score accuracy of 0.935071, indicating
that it had the highest number of correct predictions. The SVM model also performed well, achieving an accuracy of
0.863093, while the WFS, SHO, and Bi-LSTM models had lower accuracy scores of 0.823974, 0.838001, and
0.831828, respectively.

Figure 8:- Precision.
Figure 8 shows the precision analysis. The suggested scheme acquired the best precision score of 0.927374,
indicating that it had a high proportion of correct positive predictions. The SHO model also performed well,
achieving a precision score of 0.879402. In contrast, the WFS and Bi-LSTM models had lower precision scores of
0.789270 and 0.824981, respectively.
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Figure 9:- Sensitivity.
Figure 9 shows the Sensitivity analysis. The suggested scheme obtained the greatest sensitivity of 0.942934 score,
indicating that it had a high proportion of correctly identified positive instances. The SVM model also performed
well, achieving a sensitivity score of 0.870361. In contrast, the SHO model had the lowest sensitivity score of
0.793823, indicating that it had a lower ability to correctly identify positive instances.

Figure 10:- Specificity.
Figure 10 shows the Specificity analysis. The proposed model also performed well, achieving a specificity score of
0.927312. In contrast, the WFS model had the lowest specificity score of 0.782427, indicating that it had a lower
ability to correctly identify negative instances.
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Figure 11:- F-Measure.
Figure 11 presents the F-Measure analysis. Proposed model achieved the highest F-measure score of 0.905936. The
WFS model had the lowest F-measure score of 0.799202.

Figure 12:- NPV.
Figure 12 shows the NPV analysis. The highest NPV value of 0.942923 is achieved by the Proposed, which
outperforms the other four models by a considerable margin. This indicates that the Proposed model is better at
predicting negative outcomes correctly than the other models. The SVM model has the second-highest NPV
measure of 0.870331, followed by the WFS model through NPV value of 0.865542. Bi-LSTM and SHO models
have similar NPV values of 0.838814 and 0.804355, respectively.
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Figure 13:-MCC.
Figure 13 shows the MCC analysis. The highest MCC value of 0.983152 is achieved by the Proposed. This indicates
that the Proposed model is better at classifying the data correctly than the other models. The SVM model has the
second-highest MCC of 0.901164, tracked by the Bi-LSTM model with MCC evaluate of 0.874601. WFS and SHO
models have very similar MCC values of 0.829492 and 0.829906, respectively.

Figure 14:- FPR.
Figure 14 shows the FPR analysis. The FPR values for all five models are relatively low, indicating that the models
have a low rate of false positives. Proposed model has FPR of 0.020501. The other three models have slightly higher
FPR values, but they are still relatively low.
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Figure 15:- FNR.
Figure 15 shows the FNR analysis. The FNR values for all five models are low, ranging from 0.003593 to 0.010017.
Proposed model has the lowest FNR of 0.003593, followed closely by the Bi-LSTM model with an FNR of
0.003805. The other three models have slightly higher FNR values, but they are still relatively low.

Conclusion:-
This research has successfully established and tested a new metaheuristic algorithm called the Wingsuit Spotted-
Hyena Optimizer (WSHO) for selecting the right features and classifying HSIs. Thus, the WSHO model built upon
the basis of Wingsuit Flying Search (WFS) and Spotted Hyena Optimizer (SHO) algorithms provides a highly
effective solution to the issues raised by high dimensionality and data complexity in hyperspectral analysis.
Combining the voice of advanced classifiers like the Support Vector Machine (SVM) and Random Forest (RF) with
the proposed Bi-directional Long Short-Term Memory (Bi-LSTM) network has shown considerable enhancement in
achievable classifications. The approach also brings the advantage of improving the feature selection and the
detection identification of several ground objects.

Through the analysis of a set of complex performance indicators, it has been noted that the effectiveness of the
proposed model is significantly higher than that of the traditional methods. This has successfully demonstrated the
practical applicability of the WSHO model and how it can be applied practically to identify and categorize different
minerals in hyperspectral images. To sum up, it gives the following contributions to information extraction of
ground objects from hyperspectral images. Specifically, the proposed WSHO model fulfills important shortcomings
of the current methods, which makes the developed approach more correct, effective, and extensible for real-world
remote sensing tasks. The work that will be done in the future is to investigate the generalization of this model to
some other domains of remote sensing, the improvement of the optimization, and the classification techniques to
handle even more complicated data sets.
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