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Fluoroquinolones are a class of antibiotics known as antibacterial agents, 

which kills pathogenic bacteria. Quantitative structure-activity relationship 

(QSAR) plays an important role in toxicity prediction. The present study 

deals with acute toxicity prediction as LD50 (median lethal dose) values of 

fluoroquinolone antibiotics in rat by oral exposure through QSAR modeling 

software package. The comparisons were made between existing LD50 values 

through bioassay (experimental) from PubChem (ChemIDplus) database and 

predicted LD50 values by using T.E.S.T. (Toxicity Estimation Software Tool) 

for fluoroquinolone antibiotics oral administration in rat. Among the selected 

23 fluoroquinolones, experimental data of only 8 fluoroquinolones were 

obtained and LD50 values were predicted of these 8 compounds. The present 

predicted LD50 values from T.E.S.T. for acute toxicity results of six 

fluroquinolones viz. ciprofloxacilin, ofloxacin, lomefloxacin, fleroxacin, 

levofloxacin and prulifloxacin were higher while other two fluroqunolones 

viz. enoxacin and norfloxacin were lower in comparison to experimental 

values. This software helps to predict the exact LD50 values when compared 

to experimental data were reported in range (>2000 to >5000 mg/kg). This is 

a preliminary observation as easy screening of LD50 values with the 

particular software package. Further study may be relevant with other 

softwares to compare the predicted data. 

 

 
Copy Right, IJAR, 2015,. All rights reserved 

 

 

INTRODUCTION   
 

Antibiotics are known as chemotherapeutic agents, which are the combinations of chemical substances. These can 

kill or inhibit the growth of bacteria by various mechanisms like blocking essential functions of bacteria cell (Davey, 

2000). It was known that drugs or medicines have specific mode of actions, may probably exert effects on terrestrial 

and aquatic ecosystems, when discharged into the medium like soil and water in the environment (Macri et al., 1988; 

Lanzky et al., 1997; Wollenberger et al., 2000). Soni, (2012) has reviewed that fluoroquinolones are a class of 

antibiotics with potent bactericidal and broad spectrum inhibitory activity against several pathogens that are 

responsible for variety of infections including urinary tract infections (UTI), gastrointestinal infections, respiratory 

tract infections (RTI), sexually transmitted diseases (STD), skin infections etc.  
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Quantitative structure–activity relationship (QSAR) is a mathematical model that attempt to relate the structure-

derived features (molecular descriptors) of a chemical compound to its biological or physicochemical activity. 

Therefore, this method has been established for the predictive and ultimately diagnostic abilities. This can be used to 

predict the biological activity viz. IC50, LC50/LD50, EC50 etc. or class viz. inhibitor versus non-inhibitor of 

compounds before the actual bioassay. The molecular descriptors for QSAR are used on the basis of 

thermodynamic, steric and electronic parameters (Choplin, 2005; Valentina et al., 2009). These parameters include 

partition coefficient, molecular volume, surface area, molecular refractivity etc. Also, the structural descriptors, 

which provides information about the various toxicological and pharmacokinetic aspects of the synthesized 

molecules includes E-state functions, kappa index, Chi index, Lipinski five rules and Wiener index (USEPA, 2012).  

 

An in silico method is also based on quantitative structure–activity relationship (QSAR) models, which can be used 

to understand drug action, design new compounds or drugs and screen chemical libraries (Yap et al., 2006; Guido et 

al., 2008; Schwaighofer et al., 2009;  Valerio, 2009). The experimental measurement as bioassay with animals for 

compounds is difficult, more expensive and time-consuming, thus a great, facinating effort has been done into 

attempting to predict biological activity through QSAR along with statistical modeling (Kovalishyn et al., 2014). 

Recently, the European Chemicals Legislation, Registration, Evaluation and Authorization of Chemicals (REACH) 

have suggested the use of in silico method as a study for reliable toxicological risk assessment (Worth et al., 2007; 

Lilienblum et al., 2008). According to Singh et al. (2014), multispecies QSARs modeling tools are suitable of 

predicting the acute toxicity of various chemicals in recommended several test species by Organization for 

Economic Co-operation and Development (OECD) in different trophic levels such as algae, daphnia, fish and 

bacteria to help in regulatory toxicology. Some studies on design, synthesis and drug development of antibiotics as 

antibacterial agents by QSAR modeling (Pil’o et al., 2002; Kumar et al., 2011; Prajapat et al., 2011; Joshi et al., 

2012; Kovalishyn et al., 2014; Patil et al., 2014) and few works on toxicity prediction have been reported 

(Venkataramana et al., 2011). According to Soni, (2012), the growth in understanding of structure activity 

relationships with fluoroquinolones has been enabled the development of even better chemical compounds. But less 

works have been reviewed to evaluate acute toxicity prediction of fluoroqunilones antibiotics in mammals through 

QSAR methods (Chu and Fernandest, 1989; Tillotson, 1996).  

 

There are several recommended toxicity prediction softwares viz. TOPKAT (Toxicity Prediction by Komputer 

Assisted Technology) (Accelrys, 2004), DRAGON (Talete, 2006), ADMET (Absorption, Distribution, Metabolism, 

Elimination, and Toxicity) 2 and 3 (User manual, Simulation Plus Inc, 2011), V‐life MDS (V‐life Technologies, 

2006) and ADME (Pallas, Compu Drug International Inc., 2000), T.E.S.T. (Toxicity Estimation Software Tool) 

(USEPA, 2012), PADEL (Yap, 2011), MDL QSAR (Elsevier MDL, 2006), Molconn-z (Edusoft-LC, 2006) etc. 

According to USEPA (2012), T.E.S.T. software is a simple QSAR models to calculate the toxicity of chemicals 

using a simple linear function of molecular descriptors is as follows:  

 

Toxicity = ax1 + bx2 + c 

 

Where, x1 and x2 are the independent descriptor variables and a, b, and c are fitted parameters.  The T.E.S.T 

software provides multiple prediction methodologies, which has greater confidence in the predicted toxicities (as 

assuming the predicted toxicities are closely similar from different methods).  In addition some researchers may 

have more confidence in particular QSAR approaches based on value added experience.   

 

In this present study an attempt has been made to predict acute toxicity of fluoroquinolone antibiotics in the rat oral 

exposure for LD50 values through QSAR modeling software package. The comparisons were made between existing 

LD50 values through bioassay as experimental and predicted LD50 values by using T.E.S.T. (Toxicity Estimation 

Software Tool) software for fluoroquinolone antibiotics. 

 

MATERIALS AND METHODS: 
 

Name of the compound and its derivatives 

 

There were established 23 types of fluoroquinolone antibiotics selected based on attached fluorine atoms with the 

central ring system and tabulated their structure, CAS (Chemical Abstracts Services) no. and SMILES (simplified 

molecular-input line-entry system) string were taken from ChemIDplus of USEPA (Table 1). These fluoroquinolone 

antibiotics were selected and tabulated on the basis of bacterial resistance with respective three generations viz. 
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second, third and forth types. According to Lodha, (2008) the essential structure of fluroquinolone with some recent 

trends in chemical modifications is as follows: 

 

 
Fig. 1 – Essential scafford structure of fluroquinolone  

 

Where, R1, R5, R7 and R8 are substitution positions in primitive fluoroquinolone moiety.  

 

Name of the software used 

 

In present study, the software was used namely T.E.S.T Verson 4.1. 

 

Meta data used for LD50 of rat oral exposure 

 

Meta data i.e. experimental data (mg/kg) for rat oral LD50 values were collected from PubChem (ChemIDplus) and 

converted to Log LD50 value for individual antibiotic derivatives.  

QSAR modeling by using T.E.S.T. software 

 

The QSAR modeling software package was used to estimate the LD50 values of fluroqinolone (Figure 1) and its 

derivatives. The software used was Toxicity Estimation Software Tool or T.E.S.T., Version 4.1 (US EPA, 2012). 

The acute toxicity prediction of rat oral LD50 values were compared between bioassay results as experimental data 

collected from PubChem (ChemIDplus) and predicted values were obtained after operating the above mentioned 

software. 

 

It was reported that T.E.S.T. software package estimates toxicity using a variety of QSAR methodologies (Martin et 

al., 2008), such as hierarchical clustering, the Food and Drug Administration (FDA) MDL, nearest neighbor and a 

consensus model, which is simply the average of the predicted toxicities from other QSAR methodologies, 

considering the applicability domain in each method (Zhu et al., 2009). The required descriptors are calculated 

without requiring any external programs. A structure of a chemical can easily be shown after entering CAS no of 

particular chemical. After showing the structure, the chemical’s toxicity can be estimated using one of several 

advanced methodologies. This software calculates LD50 values from 7,420 chemicals (Martin et al., 2008). 

Generally molecular descriptors are physical characteristics of the structure of chemicals viz. the molecular weight 

or the number of benzene rings of a chemical.  The overall pool of descriptors in the software (T.E.S.T.) contains 

797 two-dimensional descriptors.  The descriptors include the classes of descriptors viz. E-state values and E-state 

counts, constitutional descriptors, topological descriptors, walk and path counts, connectivity, information content, 

2d autocorrelation, Burden eigenvalue, molecular property (such as the octanol-water partition coefficient), Kappa, 

hydrogen bond acceptor/donor counts, molecular distance edge, and molecular fragment counts. Following 

important methods were described in instruction manual for the present software (USEPA, 2012): 

 

Hierarchical clustering method  

In T.E.S.T., the hierarchical clustering method utilizes a variation of the Ward’s Minimum Variance Clustering 

Method to contribute a series of clusters from the initial training set as per Romesburg, (1984). According to Ruiz et 

al. (2012), the change in variance caused by combining clusters j and k is in equation follows:  
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where nj is the number of chemicals in cluster j, Cj,i is the centroid (or average value) for descriptor i for cluster  j, 

and  d is the number of descriptors (~800) (Martin et al., 2008). It was noted that the predicted value for a given test 

chemical is calculated using the equally weighted average of the model predictions from the closest cluster from 

each step in the hierarchical clustering.   

 

FDA MDL QSAR method  

In T.E.S.T., the FDA MDL method is based on the work of Contrera et al. (2003). In this method, it was noted that 

predictions for each test chemical are made using a unique cluster (constructed at runtime). It contains structurally 

similar chemicals selected from the overall training set. It is in different to the Hierarchical method, where the 

predictions are made using one or more clusters, which are constructed a priori using Ward’s method. For individual 

test chemical, a cluster is constructed using the 30 most similar chemicals from the training set as defined by the 

cosine similarity coefficient, SCi,k, which is calculated by the equation as follows as per USEPA (2012):   

 
 

where xij is the value of the j-th normalized descriptor for chemical i (normalized with respect to all of the chemicals 

in the original training set) and xkj is the value of the j-th descriptor for chemical k. The entire pool of approximately 

800 descriptors is always used to calculate the similarity coefficient in equation (2). A multiple linear regression 

model is then built for the new cluster using a genetic algorithm-based method, and the toxicity can be easily 

predicted (Zhu et al., 2009).  

 

Nearest neighbor method  

In T.E.S.T. (USEPA, 2012), The nearest neighbor method is a simplification of the variable selection of kNN 

approach. It was observed in the nearest neighbor method, the toxicity is simply predicted as the average of the 

toxicity of the three most similar chemicals from the training set. The similarity is defined in terms of the cosine 

similarity coefficient (Equation 2).   

 

Consensus method 

In the consensus method of T.E.S.T., the predicted toxicity is simply the average of the predicted toxicities from the 

above mentioned QSAR methodologies considering the applicability domain of individual method (Zhu et al. 2008).  

It was suggested, if only a single QSAR methodology can make a prediction then the predicted value is unreliable 

and unable to use.  This method typically provides the highest prediction accuracy by the predictions from the other 

above mentioned methods. In addition this method provides the highest prediction coverage because several 

methods with slightly different applicability domains are used to make a prediction (Ruiz et al., 2012). 

 

Statistical external validation  

In T.E.S.T., the predictive ability of each of the QSAR methodologies was evaluated using statistical external 

validation as per Gramatica and Pilutti (2004).  According to Golbraikh et al. (2003), a QSAR model is acceptable 

on predictive power if the following equations are satisfied: 
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where q

2
  is the leave one out correlation coefficient for the training set, R

2
  is correlation coefficient between the 

observed and predicted toxicities for the test set, R
2

o  is correlation coefficient between the observed and predicted 

toxicities for the test set with the Y-intercept set to zero (where the regression line is given by Y=kX). The 

prediction accuracy was evaluated in terms of equations (4) and (5).  In addition the accuracy will be evaluated in 

terms of the RMSE (root mean square error), and the MAE (mean absolute error) for the test set.  It has been 

demonstrated that q
2
 (the leave one out correlation coefficient for the training set) is not correlated with R

2
 for the 

test set (Golbraikh and Tropsha, 2002).   

 

Applicability domains   

A concept of the applicability domain (AD) was created and used to avoid such an incorrect extrapolation of activity 

predictions in T.E.S.T. According to Ruiz et al. (2012), the QSAR model can predict the potential toxicity of any 

chemical but the predictive confidence may vary. Generally each model is processed using a training set of 

chemicals, which cover only a small fraction of the entire chemical world and it was observed that its prediction 

capability is restricted to its AD, called as its descriptor space. As a result of this, only a certain fraction of 

chemicals of an external data set can be reasonably predicted. So it is promising to determine the chemical of 

interest falls within or outside the AD of a particular model. In context, varying degrees of uncertainties could be 

validated with such a prediction. For model ADs, features and limitations need to be understood thoroughly for the 

appropriate interpretation of predictive results (Tropsha and Golbraikh, 2007; Golbraikh et al., 2003;  Golbraikh and 

Tropsha, 2002; Netzeva et al., 2005; Schultz et al., 2007; Tetko et al., 2008; Roy et al.,  2011; Ruiz et al., 2012).  

 

RESULTS          

 

In Table 2, the acute toxicity prediction data were tabulated, out of the 23 selected fluroquinolones, the experimental 

bioassay as rat oral LD50 values of 11 fluroquinolones viz. ciprofloxacin, enoxacin, lomefloxacin, norfloxacin, 

ofloxacin, fleroxacin, levofloxacin, sparfloxacin, balofloxacin, pazufloxacin and prulifloxacin were reported in 

PubChem (ChemIDplus) database. Among these antibiotics, experimental LD50 values were obtained as the range of 

minimum (>2000 to >5000 mg/kg) except in 3 compounds such as lomefloxacilin (3800 mg/kg), ofloxacin (3590 

mg/kg) and levofloxacin (1478 mg/kg). Other 12 derivatives like nadifloxacin, pefloxacin, rufloxacin, grepafloxacin, 

tosulfloxacin, temafloxacin, gatifloxacin, gemifloxacin, moxifloxacin, trovafloxacin, clinafoxacin and sitafloxacin, 

the bioassay data of same test model were not found in the database. Interestingly, it was obtained the exact 

predicted LD50 values for 14 compounds but the T.E.S.T. unable to calculate 9 compounds due to unidentified CAS 

No. in the software. Out of 14 compounds, 5 compounds were not considered because of unavailability of bioassay 

data. The prediction of LD50 values of rat oral exposure were estimated for 8 derivatives viz. ciprofloxacin, 

enoxacin, lomefloxacin, norfloxacin, ofloxacin, fleroxacin, levofloxacin and prulifloxacin by using software 

T.E.S.T. consensus method. The prediction was also evaluated for six derivatives viz. nadifloxacin, pefloxacin, 

grepafloxacin, tosulfloxacin, temafloxacin and trovafloxacin by using T.E.S.T. but these were not included in 

comparison between experimental versus predicted data due to unavailability of experimental data. All the predicted 

and experimental LD50 values were calculated in logLD50 values. The r
2
 value of prediction data of 11 compounds 

from FDA cluster model fit results for individual compound was tabulated and the residual value of 8 compounds 

was also calculated in Table 2. 

The eight chemicals were very well represented in the model database as assessed by the statistical analysis. The 

similarity analysis showed that there are several chemicals in the database that have very close similarity distance in 

T.E.S.T. The confidence in the assessment between experimental and predicted of –logLD50 values (mol/kg) were 

represented graphically for individual fluroquinolone for both test set as well as training set along with Mean 

(3) 

(4) 

(5) 
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absolute error (MAE) value calculated by software itself (Fig. 2 A & A1; B & B1; C & C1; D & D1; E & E1; F & 

F1; G & G1 and H & H1). If the MAE was lower than the value for the entire test and training set then the predicted 

value increases the confidence. The present predicted values from acute toxicity results of four fluroquinolones viz. 

ciprofloxacilin, enoxacin, norfloxacilin, levofloxacin were higher while other four fluroqunolones viz. ofloxacin, 

fleroxacin, lomefloxacin and prulifloxacin were lower comparing to experimental values (Table 2). 

Several fluroquinolone antibiotic and its related compounds are available in numbers. The selected fluroquinolones 

were only 23 types in the present study. Moreover, acute toxicity studies with special reference to oral LD50 values 

in rat were found very less in number i.e. only 11 types of fluroquinolones. These fluoroquinolone compounds are 

ciprofloxacin, enoxacin, lomefloxacin, norfloxacin, ofloxacin, fleroxacin, levofloxacin, sparfloxacin, balofloxacin, 

pazufloxacin and prulifloxacin. The experimental data were obtained from PubChem (ChemIDplus) database (Table 

2) but in the software it was unable to predict LD50 value of 3 compounds viz. sparfloxacin, balofloxacin and 

pazufloxacin due to unidentified CAS No. Besides these, rest derivatives even lack rat oral LD50 values. QSAR 

modeling was carried out with the help of T.E.S.T. software (USEPA, 2012).  

 

Table 1 – List of fluoroquinolone class of antibiotics 

 

Sl 

no. 

Generic 

Name 

CAS No. SMILES structure 

Second generation 

1. Ciprofloxacin  85721-33-1 C1CC1N2C=C(C(=O)C3=CC(=C(C=

C32)N4CCNCC4)F)C(=O)O 

 

2. Enoxacin  74011-58-8 Fc1c(nc2c(c1)C(=O)C(\C(=O)O)=C/N

2CC)N3CCNCC3 

 

 

3. Lomefloxacin  98079-51-7 Fc1c(c(F)c2c(c1)C(=O)C(\C(=O)O)=C

/N2CC)N3CC(NCC3)C 

 

 
4. Norfloxacin  70458-96-7 O=C(O)\C2=C\N(c1cc(c(F)cc1C2=O)

N3CCNCC3)CC 

 

   



ISSN 2320-5407                               International Journal of Advanced Research (2015), Volume 3, Issue 6, 225-240 

230 

 

5. Ofloxacin  82419-36-1 Fc4cc1c2N(/C=C(\C1=O)C(=O)O)C(

COc2c4N3CCN(C)CC3)C 

 

 
6. Fleroxacin 79660-72-3 CN1CCN(CC1)C2=C(C=C3C(=C2F)

N(C=C(C3=O)C(=O)O)CCF)F 

 

 
7. Nadifloxacin 124858-35-1 CC1CCC2=C3N1C=C(C(=O)C3=CC(

=C2N4CCC(CC4)O)F)C(=O)O 

 
8. Pefloxacin 70458-92-3 O=C(O)\C2=C\N(c1cc(c(F)cc1C2=O)

N3CCN(C)CC3)CC 

 
9. Rufloxacin 101363-10-4 CN1CCN(CC1)C2=C(C=C3C4=C2SC

CN4C=C(C3=O)C(=O)O)F 

 
Third generation 

10. Levofloxacin  100986-85-4 C[C@H]1COc2c3n1cc(c(=O)c3cc(c

2N4CCN(CC4)C)F)C(=O)O 
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11. Grepafloxacin  119914-60-2 O=C(O)\C2=C\N(c1cc(c(F)c(c1C2=

O)C)N3CC(NCC3)C)C4CC4 

 

 
12. Sparfloxacin  110871-86-8 C[C@@H]1CN(C[C@@H](N1)C)c

2c(c(c3c(c2F)n(cc(c3=O)C(=O)O)C

4CC4)N)F 

 

 
13. Balofloxacin 127294-70-6 CNC1CCCN(C1)C2=C(C=C3C(=C

2OC)N(C=C(C3=O)C(=O)O)C4CC

4)F 

 
14. Pazufloxacin 127046-18-8 C[C@H]1COC2=C3N1C=C(C(=O)

C3=CC(=C2C4(CC4)N)F)C(=O)O 

 
15. Tosulfoxacin 100490-36-6 NC1CCN(C1)c1nc2n(cc(C(O)=O)c(

=O)c2cc1F)-c1ccc(F)cc1F 

 
16.  Temafloxacin 108319-06-8 Fc1ccc(c(F)c1)N\3c2cc(c(F)cc2C(=

O)C(/C(=O)O)=C/3)N4CC(NCC4)C 
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Forth generation 

17. Gatifloxacin  112811-59-3  Fc1c(c(OC)c2c(c1)C(=O)C(\C(=O)O)

=C/N2C3CC3)N4CC(NCC4)C 

 

 

 
18. Gemifloxacin  175463-14-6  Fc2c(nc1N(/C=C(/C(=O)O)C(=O)c1c2

)C3CC3)N4C/C(=N\OC)C(C4)CN 

 

 
19. Moxifloxacin  354812-41-2  COc1c2c(cc(c1N3C[C@@H]4CCCN[

C@@H]4C3)F)c(=O)c(cn2C5CC5)C(

=O)O 

 

 
20. Trovafloxacin  147059-72-1 O=C(O)C2=CN(c1nc(c(F)cc1C2=O)N

3C[C@H]4[C@H](N)[C@H]4C3)c5c

cc(F)cc5F 

 

 
21. Clinafoxacin 105956-99-8 Fc2c(c(Cl)c1N(/C=C(/C(=O)O)C(=O)

c1c2)C3CC3)N4CCC(N)C4 

 
22. Sitafloxacin 127254-12-0  F[C@H]5C[C@H]5N2/C=C(/C(=O)O

)C(=O)c1cc(F)c(c(Cl)c12)N4C[C@@

H](N)C3(CC3)C4 
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23. Prulifloxacin 123447-62-1  CC1N2C3=CC(=C(C=C3C(=O)C(=C

2S1)C(=O)O)F)N4CCN(CC4)CC5=C(

OC(=O)O5)C 

 
 

 

Table 2 – Prediction of LD50 values in rat by fluoroquinolone antibiotics in comparison to available and 

unavailable bioassay metadata 

 

Sl 

no. 

Name Estimation by bioassay 

experiment 

Estimation by T.E.S.T 

(Consensus method) 

Statistical data validation by 

T.E.S.T 

  LD50 values 

(mg/Kg) 

Log LD50 

values 

(mg/Kg) 

Predicted LD50 

value   (mg/kg) 

Predicted Log 

LD50 value 

(mg/kg) 

r
2
 value of 

individual 

predicted data 

from FDA model 

Residual 

1. Ciprofloxacin >2000
a
 3.301 3506.65 3.545 0.911 -0.244 

2. Enoxacin >5000
b
 3.699 5287.39 3.723 0.817 -0.024 

3. Lomefloxacin 3800
c
 3.580 3104.79 3.492 0.916 0.088 

4. Norfloxacin >4000
d
 3.602 5016.64 3.700 0.889 -0.098 

5. Ofloxacin 3590
e
 3.555 1975.66 3.296 0.743 0.259 

6. Fleroxacin >4000
f
 3.602 2903.66 3.462 0.881 0.140 

7. Nadifloxacin n.a. n.a. 1234.17 3.091 0.841 n.d. 

8. Pefloxacin n.a. n.a. 3446.93 3.537 0.817 n.d. 

9. Rufloxacin n.a. n.a. n.f. n.f. n.f. n.d. 

10. Levofloxacin 1478
g
 3.170 1975.66 3.296 0.743 -0.126 

11. Grepafloxacin n.a. n.a. 2828.79 3.451 0.894 n.d. 

12. Sparfloxacin >5000
h
 3.699 n.f. n.f. n.f. n.d. 

13. Balofloxacin >5000
i
 3.699 n.f. n.f. n.f. n.d. 

14. Pazufloxacin >5000
j
 3.699 n.f. n.f. n.f. n.d. 

15. Tosulfloxacin n.a. n.a. 3153.17 3.499 0.804 n.d. 

16. Temafloxacin n.a. n.a. 2295.92 3.361 0.835 n.d. 

17. Gatifloxacin n.a. n.a. n.f. n.f. n.f. n.d. 

18. Gemifloxacin n.a. n.a. n.f. n.f. n.f. n.d. 

19. Moxifloxacin n.a. n.a. n.f. n.f. n.f. n.d. 

20. Trovafloxacin n.a. n.a. 1472.14 3.168 0.907 n.d. 

21. Clinafoxacin n.a. n.a. n.f. n.f. n.f. n.d. 

22. Sitafloxacin n.a. n.a. n.f. n.f. n.f. n.d. 

23. Prulifloxacin >5000
k
 3.699 1526.32 3.184 0.973 0.515 

a to k = data from ChemIDplus; n.a. = Not Available; n.f. = Not found in T.E.S.T. software; n.d. = Not done 
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             A= Prediction of ciprofloxacin with most    A1= Prediction of ciprofloxacin with most  

             similar chemicals in external test set                  similar chemicals in training set 

 

 

 
 

                B= Prediction of enoxacin with most          B1= Prediction of enoxacin with most  

                similar chemicals in external test set                       similar chemicals in training set 
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C= Prediction of lomefloxacin with most         C1= Prediction of lomefloxacin with most  

                    similar chemicals in external test set                 similar chemicals in training set 

 

 
D= Prediction of norfloxacin with most         D1= Prediction of norfloxacin with most  

                     similar chemicals in external test set                similar chemicals in training set 
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               E= Prediction of ofloxacin with most         E1= Prediction of ofloxacin with most  

               similar chemicals in external test set                similar chemicals in training set 

 

 

 
             F= Prediction of fleroxacin with most           F1= Prediction of fleroxacin with most  

             similar chemicals in external test set                    similar chemicals in training set 
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        G= Prediction of levofloxacin with most           G1= Prediction of levofloxacin with most  

        similar chemicals in external test set                         similar chemicals in training set 

 

 

 
H= Prediction of prulifloxacin with most           H1= Prediction of prulifloxacin with most  

      similar chemicals in external test set                         similar chemicals in training set 

 

 

Fig. 2. Predicted rat oral LD50 values (mol/kg) of fluroquinolones by T.E.S.T. QSAR modeling. MAE = Mean 

absolute error in -Log10(mol/kg) 
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DISCUSSION  
 

The present prediction results were supported by Wang et al. (2010). According to them, QSAR technique can be 

advantageous on discovering the relationship between the fluroquinolone molecular structures and their acute 

toxicities. It was known that the T.E.S.T. software estimates the predicted rat oral LD50 values by calculating several 

molecular descriptors viz. Constitutional descriptors, Chi Connectivity Indices, Kappa Shape Indices, 

Electrotopological State Indices, Fragments for each atom, 2D Molecular properties, Information Indices, Burden 

eigenvalue descriptors, Topological descriptors, Walk and Path counts, 2D Autocorrelation Descriptors, Molecular 

Properties and Molecular Distance Edge Descriptors. These molecular descriptors have used to detect toxicity 

prediction in mammals by QSAR modeling (Gombar and Jain, 1987; Gombar and Enslein, 1990; Hall et al., 1991; 

Ruiz et al., 2012). Linear regression analysis is a widely useful quantization method at the end of QSAR study (Xu, 

2004). 

 

In this present study, the LD50 predicted values were compared with the available experimental data of 

fluroquinolones from ChemIDplus for QSAR modeling by using T.E.S.T. software. It was reported that T.E.S.T. 

software has better performance than other softwares like ADMET and TOPKAT for the prediction of sulfur 

mustard and its breakdown products on mammal (Ruiz et al., 2012). According to studies by Canadian Center for 

Occupational Health & Safety (2012) and Ruiz et al. (2012), the toxicity ranges were determined as super toxic (<5 

mg/kg), extremely toxic (5–50 mg/kg), very toxic (50–500 mg/kg), moderately toxic (500–5,000 mg/kg), slightly 

toxic (5,000–15,000 mg/kg) and practically non-toxic (>15,000 mg/kg). The present predicted acute toxicity results 

with special reference to LD50 values of 6 fluroquinolones viz. ciprofloxacilin, ofloxacin, fleroxacin, levofloxacin 

and prulifloxacin were within range of 1500 to >3500 mg/kg as moderately toxic and other 2 fluroqunolone viz. 

enoxacin and norfloxacin was higher value of >5000 mg/kg as slightly toxic. According to Li et al. (2014), the 

quinolones showed limited acute toxicity, the coexistence of multiple quinolones in environmental media like water 

etc. may lead to severe overall toxicity. The present results suggested to predicting toxicity with other aquatic test 

models viz. daphnia, fish etc.  

 

CONCLUSION 

 

The acute toxicity with special reference to LD50 value in rat after oral exposure for 8 fluroquinolone antibiotics out 

of 23 was predicted in comparison to experimental available LD50 data. The result suggested that predicted acute 

toxicity of six fluroquinolones viz. ciprofloxacilin, ofloxacin, lomefloxacin, fleroxacin, levofloxacin and 

prulifloxacin were within range of 1500 to >3500 mg/kg as moderately toxic and other two fluroqunolones viz. 

enoxacin and norfloxacilin were within range of >5000 mg/kg as slightly toxic. The QSAR model was used through 

T.E.S.T. software (USEPA, 2012) for the prediction of LD50 values of fluroquinolones. This software has a potent 

capability to predict rat oral LD50 value with suitable programming of QSAR modeling for molecular descriptors 

and similar test chemicals by calculating test sets and training set (Ruiz et al., 2012) and the present study was 

evaluated the exact value of LD50 in rat exposed orally, which was lacking in experimental data as only obtained of 

minimum range (>2000 to >5000 mg/kg). Although the quinolones showed limited acute toxicity, the coexistence of 

multiple quinolones in environmental matrices may lead to severe overall toxicity. Limited research work on QSAR 

modeling has been carried out on fluroquinolone antibiotics (Li et al., 2014) with other test species. This present 

prediction work was based on only single QSAR modeling software but should need further investigation by using 

other softwares. The future prediction should be done in other aquatic test models with this software to know exact 

impact on non mammals. 
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