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with new manifold drives dynamics of a given nonlinear system to a stable 
sliding surface faster compared to standard counterparts. The new manifold 
definition is further exploited for a straightforward derivation of discrete-
time predictive controller with on-line optimization in dynamics of both 
deterministic and stochastic components. Simulation results for a second-
order nonlinear system show that new predictive controller leads to more 
successful tracking of a given target trajectory compared to conventional 
sliding-mode controller for the system studied with suitably determined real-
time operational conditions such as time and control update terms. 
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Introduction 
 
Model predictive control (MPC), which is also known as receding horizon control, aims at determining an optimal 
open-loop control sequence as a means of trajectory planning given system constraints, [1]. Despite theoretical 
attractiveness of MPC, especially for linear systems, almost all systems are nonlinear. Nonlinear MPC (NMPC) has 
a major disadvantage that the associated computational time interval and boundary constraints may impose hard-to-
solve complicated optimality conditions about stability against un-modeled components even for simple nonlinear 
systems, [2]. A solution is to employ a closed-loop control with non-terminal conditions to correct discrepancies in 
state dynamics which may arise due to uncertainties involved where an open-loop cost function to be minimized is 
accompanied with a candidate Lyapunov function, [3]-[4]. Sliding-mode control (SMC), [5]-[6], is a closed-loop 
control method which gives rise to system dynamics robust against uncertainties and external disturbances. It mainly 
consists of reaching and sliding-mode phases, respectively. In the former, the system trajectory that has been set off 
a bounded initial condition is forced to converge to a predefined sliding surface in a finite time while the latter refers 
to dynamics on the sliding surface presumably reached. In SMC, total control is a superposition of nominal and 
additive discontinuous terms where the nominal control drives plant dynamics to the sliding surface under nominal 
conditions while the additive control aims at maintaining system behavior on that surface. Thus, it is advantageous 
to integrate MPC and SMC, which is abbreviated as SM-MPC.  

In SM-MPC, off-line control sequence, which has been obtained in predictive stage, is further updated in 
closed-loop with SMC. For example, in [7] and [8], SMC is employed as a discrete-time compensator where the 
next control sequence is estimated resulting from an optimization. In [9], the ensemble of control terms obtained 
from MPC is regarded as a reference control generator that is further regulated by the control obtained from an 
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integral sliding mode (ISM) controller. The major problem with major SM-MPC methods is that the control for 
standard SMC lags the residual error given a particular state through the control horizon, which causes excessive 
chattering in closed-loop and which is then to be disseminated at updates in MPC. If the control is updated on-line to 
correct predicted dynamics of system along the sliding manifold, overall operation will exhibit longer delay in 
tracking compared to SMC-only operation.  

In this study, a model predictive control scheme for nonlinear systems is described. New controller is obtained 
from a new sliding manifold definition. The sliding-mode control with new manifold brings dynamics of a given 
nonlinear system to a stable sliding surface faster than the standard counterparts. The new manifold definition is 
further exploited for a straightforward derivation of discrete-time predictive controller with on-line optimization in 
dynamics of both deterministic and stochastic components. Simulation results for a second-order nonlinear system 
demonstrate that the new predictive controller leads to more successful tracking a given target trajectory compared 
to conventional sliding-mode controller for the system studied with suitably determined real-time operational 
conditions such as time and control update terms. 

Overview of Sliding-mode Control and Description of New Manifold  
 
We consider an input-affine nonlinear multi-input multi-output (MIMO) system  

𝐱 = 𝐟 𝐱 + 𝐠 𝐱 𝐮 + 𝛖

𝐲 = 𝐡 𝐱

 
(1) 

where 𝐱, u, y and 𝛖represent state, control/input, measured/estimated output and external disturbance vectors, 
respectively, while f, g and h are respective smooth vector fields of suitable dimensions. The input coupling matrix g 
is assumed to be invertible. Given a target trajectory, yd (t), the output tracking error is e(t) =y(t) -yd(t). For the i-th 
coordinate tracking error ei(t) = yi(t) - yd,i(t), and a constant 𝜆!> 0, the standard sliding manifold is defined as 

𝑠! 𝑡 =
𝑑
𝑑𝑡 + 𝜆!

!!!!

Ψ[𝑒!(𝑡)] (2) 

where ri ≥ 1 is the relative degree. In (2), Ψ 𝑒! 𝑡 = 𝑒! 𝑡  and Ψ 𝑒! 𝑡 = 𝑒! 𝜏 𝑑𝜏
!
!  correspond to conventional and 

integral-type SMC (ISMC), respectively. For manifold in (2), the nominal control 𝑢!is derived by solving the 
equation 𝑠! 𝑡 = 0 with nominal model. The overall control law is then given by 𝑢! = 𝑢! +   𝛿𝑢! where the additional 
control 𝛿𝑢! is employed for correcting the adverse effects due to bounded disturbance υi and other unknown 
uncertainties. It is usually given by 𝛿𝑢! = −𝜅!𝜑(𝑠!) where 𝜑(. ) is a discontinuous function such as saturation ‘sat’. 
The parameter 𝜅! is an adaptive gain to ensure that the sliding manifold dynamics satisfies the convergence 
condition 𝑠! 𝑡 𝑠! 𝑡 ≤ −𝜂! 𝑠! 𝑡  with a constant 𝜂! > 0 for presumed bounds on disturbance and uncertainties. 
Under this condition, the standard SMC laws have a reach time, which is time for trajectory of the output to reach 
the surface 𝑠! 𝑡 = 0 starting at any bounded 𝑠! 0 , upper-bounded by |si(0)|/ηi. It is seen that the nominal control 
for conventional SMC does not involve error term itself explicitly. Hence, the resulting control will lag the error, 
which causes chattering. On the other hand, the nominal control for ISMC includes error, which yields faster 
operation at a cost of possible instability and sensitivity in tracking fast variations in target trajectory.  

A suitable solution to the shortcomings cited above is to devise a nominal control, which can be obtained by 
combining both SMCs. We consider a manifold 𝑠! 𝑡 +𝜆!𝑠! 𝑡 = e!!!! !!!!

!!!

!"
 where 𝑠! 𝑡  refers to conventional 

sliding manifold. With this new manifold, the nominal control is obtained based on the condition 𝑠! 𝑡 +𝜆!𝑠! 𝑡 = 0, 
[6]. The convergence rule for new manifold is given by 𝑠! 𝑡 𝑠! 𝑡 ≤ −𝜂! 𝑠! 𝑡 − 𝜆!𝑠!!(𝑡) referring to a system 
trajectory which reaches surface 𝑠! 𝑡 =0 with time 𝑡!"#$!,! ≤

!
!!
ln 1 + !!

!!
𝑠!(0) < !!(!)

!!
. Thus, for any bounded 

si(0), reach time for new method is smaller than that of standard SMCs. New SMC scheme has been applied for 
output tracking and navigation of under-actuated surface vessels study under noisy measurements and modeling 
uncertainties with an extended Kalman filter (EKF) as an observer in [10]. 

Proposed Model-predictive Controller Based on New Sliding-mode Algorithm 
 
For devising a predictive controller, we combine new manifold definition and respective convergence law in 
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discrete-time, which yields  

𝑠!,!!!! ≤ 𝑠!,!! − 2𝜂! 𝑠! 𝑡 e!!!!∆!! < 𝑠!,!! 𝑡  (3) 

for the k-th sampling time tk and update interval Δtk. Then, for a horizon depth N>0 and initial time instance q ≥ 0,  
𝑠!,!! − 𝑠!,!!!! = 𝑠!,!! − 𝑠!,!!!!!!!!!

!!! ≥ 𝑠!,!! 1 − e!!!!∆!!!!!!!
!!! + 2𝜂!∆𝑡! 𝑠! 𝑡 e!!!!∆!! > 0, which implies that 

𝑠!,!!
!!!
!!! ≤ 𝑀 < ∞. With use of Lie derivatives for (1) and by rearranging resulting terms into the new manifold, 
sliding-mode dynamics can be decomposed into deterministic (s) and stochastic uncertain/random noise (ε) terms as  

 

𝐬!!! = 𝚲!𝐬! +𝚿!𝛿𝐮! = g! 𝐬! , 𝛿𝐮!  

𝛆!!! = 𝛀!𝛆! + 𝚵!𝐮! = g! 𝛆! ,𝐮!  
(4) 

respectively, where column vectors 𝐬! = 𝑠!,! !!!
! , 𝛿𝐮! = 𝛿𝑢!,! !!!

! , 𝐮! = 𝑢!,! !!!
! , 𝛆! = 𝜀!,! !!!

!  and diagonal 
matrices 𝚲! = diag e!!!Δ!!

!!!
! , 𝚿! = Δ𝑡!diag 𝛽!,!e!!!Δ!! !!!

! , 𝛀! = Δ𝑡!𝚲!,    𝚵! = Δ𝑡!diag 𝜗!!,!e
!!!Δ!!

!!!

! . Here, 

notation 𝑎!,! !!!
!  denotes column vector [𝑎!,! …   𝑎!,!]!. For the i-th coordinate, term 𝜀!,! = 𝜗!!,! + 𝜐!,! accounts for 

uncertainty 𝜗!!,!  in 𝛼!,! = 𝐿!
!! ℎ!(𝐱!) and disturbance 𝜐!,! while 𝜗!!,! in 𝚵! refers to uncertainty in 

𝛽!,! = 𝐿!!𝐿!
!!!! ℎ!(𝐱!), respectively. We consider variation of 𝑠!,!!

!!!
!!!  for updating the pre-computed off-line 

control sequence as a means of on-line optimization.  Given a desired trajectory, a sliding-mode model predictive 
algorithm can be developed by minimizing the cost function  

𝐽 = 𝜑 𝐬!!! + 𝛤(𝐬! , 𝛿𝐮!)
!!!!!

!!!
 (5) 

where 𝛤 𝐬! , 𝛿𝐮! = !
!
𝐬!!𝐬! +   

!
!
𝛿𝐮!!𝐏𝛿𝐮! with terminal term 𝜑 𝐬!!! = !

!
𝐬!!!! 𝐬!!!. In (5), P is a suitable 

positive semi-definite matrix to ensure a bounded J through δuk. The Lagrangian for optimizing J in (5) is given by 

𝐽 = 𝜑 𝐬!!! − 𝛒!!!! 𝐬!!! + 𝐻! − 𝛒!!𝐬!
!!!!!

!!!!!
+ 𝐻! (6) 

where the respective Hamiltonian is 𝐻! =   𝛤 𝐬! , 𝛿𝐮! + 𝛒!!!! g! 𝐬! , 𝛿𝐮!   with co-state vector 𝛒! = 𝜌!,! !!!
! . Co-state 

vectors concerning variation of J according to (6) are obtained as 
 

𝛒!!!! =
𝜕𝜑

𝜕𝐬!!!
= 𝐬!!!!  

𝛒!! =
𝜕𝐻!
𝜕𝐬!

= 𝐬!! + 𝛒!!!! 𝜕g!
𝜕𝐬!

= 𝐬!! + 𝛒!!!! 𝚲! 
(7) 

where 𝑘 = 𝑞 + 1,… , 𝑞 + 𝑁. Then, input-constraint variation of J to be minimized on-line is then found to be 

Δ𝐽 ≈
𝜕𝐻!
𝜕𝛿𝐮!

!

Δ(𝛿𝐮!)
!!!!!

!!!
+ 𝛒!!Δ𝐬! (8) 

where ‘Δ’ stands for differential variation. Substituting 𝛒!!!!  in (7) into !!!
!"𝐮!

!
= 𝛿𝐮!!𝐏 + 𝛒!!!! 𝚿! with 𝛿𝑢!,! =

−𝜅!∅!sat
!!,!!!!,!

∅!
 for 𝜅!,  ∅! > 0  and choosing 𝐏 = Δ𝑡!diag 𝛽!,! !!!

!
 yield  

Δ𝐽 ≈ 𝛒!!Δ𝐬! − Δ𝑡!
!!!!!

!!!
𝝑!!
! Δ 𝛿𝑢!,! 𝛿𝑢!,! !!!

!
 (9) 
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where 𝝑!! =    𝜗!!,! !!!

!  is vector of uncertainties in 𝛽!,!. By assuming that uncertainties in coordinates are statistically 
uncorrelated and stationary, then the mean and variance of ΔJ are given by 
𝜇Δ! ∝ 𝛒!!Δ𝐬! − 𝝁!!

! Δ𝑡! Δ 𝛿𝑢!,! 𝛿𝑢!,! !!!
!!!!!!

!!!  with 𝝁!! = 𝜇!!! !!!

!
 and 

𝜎Δ!! ∝ 𝝈!!
!

!
Δ𝑡! ! [Δ(𝛿𝑢!,!)𝛿𝑢!,!]! !!!

!!!!!!
!!!  with 𝝈!!

! = 𝜎!!!
!

!!!

!
, respectively. It should be noted that the initial 

and subsequent variations in sliding-mode vector are pre-computed. The additive control to be applied in the next 
control update can be predicted based on gradient descent as δuk+1 ≈δuk +  Δ(𝛿𝐮!)(∂Hk/∂δuk) where Δ(𝛿𝐮!) is to be 
adjusted to ensure decrease in |ΔJ |. 

Stochastic noisy or uncertain input to system model 𝛆!!! = 𝛀!𝛆! + 𝚵!𝐮! = g! 𝛆! ,𝐮!  in (4) represents a vector 
of uncertainty state variables 𝜀!,! = 𝜗!!,! + 𝜐!,!. Assuming that uncertainties 𝜗!!,! and 𝜗!!,! are stationary and 
uncorrelated, respective statistical mean/expectation and variance in 𝜀!,! are 𝜇!!,!!! ∝ 𝜇!!,! + 𝜗!!𝑢!,! and 𝜎!!,!!!

! ∝

𝑢!,!
𝟐𝜎!!

!
!
+ 𝜎!!,!

! , respectively. It is seen that the mean and variance of noisy terms are determined by nominal 
control. Since nominal control is computed under known conditions, noisy plant dynamics can be predicted a priori 
and hence controlled along with pre-specified nominal behaviour. 

Application of New Predictive Controller 
 
New predictive controller was designed for tracking of a second-order system given by 𝑥 = −𝑎 𝑡 𝑥!cos3𝑥 + 𝑢, [5], 
where uniform random model uncertainty and external disturbance are all modeled by 𝑎 𝑡 = 1 + sin𝑡 .  For a 
desired trajectory xd(t) and tracking error e = x - xd, the new sliding manifold is given by 𝑠(𝑡) + 𝜆𝑠(𝑡) where 
𝑠(𝑡) = 𝑒 + 𝜆𝑒, which yields nominal control 𝑢 = 𝑥! + 1.5𝑥!cos3𝑥 − 2𝜆𝑒 − 𝜆!𝑒. Given initial conditions 𝑥! and 𝑠!, 
discretised sequence of 𝑢 for k = 0, …, N-1 was obtained by sampling it at 0.01s and then used to predict the 
sequence of 𝑥!  and  𝑠! for k = 1, …, N, off-line with (1) and (4), respectively. Then, co-states 𝜌! were computed for 
k = N, …, 1 which was then utilized in discrete sequence of the additional control term 𝛿𝑢 = 0.5𝑥! cos3𝑥 +
𝜂 sat !!!  

!
. In simulations with trajectory tracking problem, the SMC parameters were set as λ = 4, η = 10, and φ = 

0.01. The prediction parameters N and Δ𝑡! were estimated for Δ𝐽 ≤ 0.005 with 𝑠! = Δ𝑠! = 0.01. For the sampling 
rate used, |ΔJ| was found to decrease faster if 0.12s < Δ𝑡!!

!!! < 0.19s, e.g. for N=20 and 0.006s < Δ𝑡! < 0.0095s.  

For comparison purpose, the conventional sliding-mode controller was also designed with the first-order 
manifold s(t) = ( !x − !xd )+λSMC (x − xd )  and reaching law !s(t)s(t)<  −ηSMC s(t)  where λSMC and ηSMC are both 
positive constants. The nominal control for this manifold was obtained by solving !s(t) = 0  while the additional 
control was formed with the hyperbolic tangent function as ‘tanh(s/φ)’ where φ>0. Total control for conventional 

SMC is found as u = xd
..
−λSMC !x +1.5 !x 2 cos3x − (0.5 !x 2 cos3x +ηSMC )tanh  s(t) /ϕ SMC( ) . For this controller, the 

parameters were chosen such that possible minimum tracking delay is attained: λSMC = 4, ηSMC = 10 and φSMC = 0.01. 
Fig. 1 shows the tracking performances and control efforts exerted by the new controller and conventional SMC for 
desired trajectory xd(t) = sinπt with initial conditions x(0) = !x(0) = 0 . 

 
 

(a) 
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(b) 

Fig. 1 (a) Tracking performance and (b) control input with new SM-MPC and conventional SMC controllers.  
 

Above results indicate that the new SM-MPC controller is able track the chosen target trajectory with smaller 
error and control inputs compared to conventional SMC for whole simulation time interval. Furthermore, as time 
elapses, new SM-MPC exhibits almost stationary behavior in both terms with smaller variation. 

Conclusions 
 
A model predictive controller for nonlinear systems is introduced based on a new sliding manifold. The sliding-
mode control corresponding to new manifold drives dynamics of a given nonlinear system to a stable sliding surface 
faster than the standard counterparts. The new manifold definition is shown to yield straightforward derivation of 
discrete-time predictive controller with on-line optimization for dynamics of both deterministic and stochastic 
components in linear terms. Simulation results for a second-order nonlinear system reveal that the new predictive 
controller is more successful in tracking of a desired trajectory compared to conventional sliding-mode controller for 
the system studied with suitably determined real-time operational conditions such as time and control update terms. 
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