
ISSN: 2320-5407                                                                                    Int. J. Adv. Res. 6(8), 911-926 

911 

 

Journal Homepage: -www.journalijar.com 

 

 

 

 

Article DOI:10.21474/IJAR01/7594 

DOI URL: http://dx.doi.org/10.21474/IJAR01/7594 

 

RESEARCH ARTICLE 

 
NUMERICAL STUDY OF MIXED CONVECTION IN THEPHOTOVOLTAIC TROMB WALL WINDOW 

FOR PASSIVE COOLING IN BIOCLIMATIC BUILDINGS. 

 
*
Yawovi Nougbléga, Kokou N’wuitcha, Kodjo Kpode, Kossi Atchonouglo and Magolmééna Banna. 

Laboratoire Sur l’Energie Solaire /Groupe Phénomène de Transfert et Energétique - Université de Lomé01 BP 1515 

Lomé 01–Togo. 

…………………………………………………………………………………………………….... 

Manuscript Info   Abstract 

…………………….   ……………………………………………………………… 
Manuscript History 

 

Received: 18 June 2018 

Final Accepted: 20 July 2018 
Published: August 2018 

 

Keywords:- 
Mixed convection, PVT romb wall 

window,solar chimney, passive cooling, 

Thermal comfort. 

 

 

 

 

A numerical study is conducted to investigate mixedconvectionwith the 

Boussinesq approximation in the Photovoltaic Trombwall window for 

passive cooling in the building.The small sized solar chimney, specially 

having a variable absorberplate height heated from thefronttop solar PV 

cells plate with a constant flux is integrated at the south façade of the 

building. Then three different values   respectively for absorber height, 

chimney width, and inlet opening size are considered for different 

combinations of the governing parameters namely, Reynolds 

number(20 <Re<200) and the Grashof number (10
4
<Gr< 10

6
).The 

results are presented in the form of streamline and isotherm plots, mass 

flow rate, outlet velocity,PV cells’ electrical efficiency, the variation of 

local Nusselt number on the heated plates 
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Introduction:- 
Ventilation is one of the important options in providing thermal comfort in buildings. A solar chimney is one of 

several available options for achieving natural ventilation in a building through solar induced air movement. A solar 

chimney can be constructed in one of the components of a building, in which one or more walls of a vertical 

chimney are made transparent by providing glazed wall(s) for allowing solar radiation to accumulate enough heat to 

induce the chimney effect. Solar energy heats up the air inside the chimney. As a result of the temperature difference 

in the air, a density gradient between the inside and outside of the chimney is obtained that in turn induces a 

naturalupwardairmovement. The solar chimney is similar to the Tromb wall concept. The distinct difference 

between them is that while the Tromb wall has a massive thermal wall that absorbs solar energy and recirculates 

warm air for passive heating of the building, the solar chimney does not have a massive wall. Rather, storage of heat 

in the wall behind the absorber is undesirable.  The Tromb wall has been used for decades as an efficient solar 

heating method. There is a massive thermal wall and a clear glazing cover with an air duct in between. As the 

surface of the thermal wall is painted black, it is hard to meet the aesthetic requirement of buildings. PV cells 

integrated on the cover glazing of theTromb wall are more appealing. Hence (Sun, W. et al, 2011) in their study 

have proved that the PV Tromb wall converts solar radiation into electricity and heat simultaneously. In contrast to 

the application of the Tromb wall, the purpose of a solar chimney is to provide ventilation to the building during the 

day without recirculation of room air. The energy used for heating, cooling and air conditioning of buildings should 

be minimized with some design based precautions. Thus(Yilmaz et al., 2008) proposed that special systems like the 

Tromb wall system might be used to decrease energy consumption in buildings.   (Zamora et al., 2009) indicated 

that theTromb wall system uses solar energy to heat, ventilate and provide thermal comfort in buildings.   In fact 

(Aste et al., 2008) proved in their study that the PV/T collectors aim is to increase electrical efficiency of the PV 
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cells by cooling the PV module surface. Hence the BIPV Tromb wall is a novel version in which glazing in the 

classic Tromb wall is replaced by a PV module. 

 

In other words, the BIPV Tromb wall is a combination of these two systems used both for producing electricity and 

heat simultaneously for energy saving.  In the BIPV Tromb wall, the cool air in the room enters the inter-space 

through the lower vent, absorbs the waste heat behind the PV panels, becomes hot and enters the room through the 

upper vent. (Chow et al., 2005) indicated that the absorption of PV heat results in an increase in PV efficiency as the 

PV panels function better when they are cool. Furthermore, (Hegazy et al., 2000)have proved that free air convective 

cooling is a simple and low cost method of keeping electrical efficiency at an acceptable level.  It is an energy 

efficient system that is easy to apply on the south facing facades of both existing and new buildings. Nowadays, 

Bioclimatic Integrated Photovoltaic-Thermal (BIPV/T) systems have turned out to be an attractive technology. 

Either semi-transparent or opaque type photovoltaic modules can be used in BIPV/T systems.  (Agrawal et al., 

2010)showed that the semi-transparent type systems are integrated with the walls, roofs and windows of buildings 

using day lighting, while the opaque type systems and the semi-transparent type systems without lighting can be 

integrated with the walls and roofs of buildings.  

 

(Cheng et al., 2009) developed a correlation between the optimal angle of the BIPV system and the latitude of the 

site of the system. The system is supposed to be integrated on thesouth oriented tilted roof at 20 different locations 

in the Northern Hemisphere. Therefore, it was concluded that to get maximum solar radiation in thenorthern 

hemisphere, the system should face south and the angle of the panel should be equal to the latitude of the terrain. 

Then (Sun et al., 2011) carried out experimental and numerical studies to investigate the performance of PV Tromb 

Walls with different south façade designs. They developed a dynamic numerical model to integrate the vented PV 

Tromb Walls with theindoor environment. Thus, they concluded that in the design ofa south façade integrated with 

PV Tromb Walls, the dynamic coupling among PV Tromb Walls, window and indoor air must be taken into 

account. Hence, (KundakciKoyunbaba et al., 2011)developed a two dimensional CFD model under transient 

conditions for the BIPV Tromb wall system. They validated the simulation model by comparing the simulation and 

the   experimental results. (KundakciKoyunbaba et al., 2012) developed two-dimensional CFD models under 

transient conditions for single-glass, double-glass and a-Si semi-transparent PV modules integrated on the Tromb 

wall facades of a model test room. Then   Semi-transparent PV modules may replace window glazing owing to the 

light transmission and electricity generation capability. The interaction between the BIPV window and the building 

involves PV electricity generation, thermal loads, lighting energyconsumption and visual comfort of the building. 

There are generally three forms of BIPV windows in current research: single pane, double-pane with enclosed air 

cavity, and ventilated double-pane with open air cavity.  (Li et al., 2009)showed that visual discomfort; solar heat 

gain, lighting energy consumption and HVAC equipment size can be reduced by replacingthe south west-facing 

tinted glass windows with semi-transparent a-Si PV panels and applying lighting controls in a typical office building 

in Hong Kong. (Lu and Law, 2013) also pointed out that using semi-transparent c-Si BIPV windows may enhance 

building energy performance. They suggested the following optimal office orientations for annual electricity savings 

in the following order for Hong Kong: south-east, south, east, south-west and west. (Olivieri et al., 2014)concluded 

that for intermediate and large openings covering more than 33% of the façade area, BIPV windows account for 18-

59% energy savings compared to glass when applied to a typical middle-size office building in Spain.   (Miyazaki et 

al., 2005) showed that primary energy consumption of a buildingcan be reduced by installing this type of BIPV 

window and adopting lighting controls. They suggested optimal transmittances of the PV module in accordance with 

different window to wall ratios of the building. A low emissivity coating was further shown by (Han et al., 2010)to 

reduce radiative heat transfer and the U-value of this BIPV window configuration.  Hence (Chae et al., 2014)showed 

that up to 30% of the annual HVAC energy consumption can be saved by installing double-pane semi-transparent 

BIPV windows as opposed to double-pane clear glass windows, in the low and medium latitude US cities. Semi-

transparent PVs with different optical properties were recommended for maximum utility cost savings for these 

cities.  The experiments conducted by (He et al., 2011) indicated that the indoor heat gain of the ventilated double-

pane BIPV window was reduced to less than half of that of the single pane BIPV window. The thermal comfort level 

of the work space was also improved due to the lower inner surface temperature of the ventilated double-pane BIPV 

window. (Chow et al., 2007a)showed that a PV transmittance of 0.45-0.55 in the ventilated BIPV window resulted 

in the greatest electricity saving when taking into account air-conditioning load, artificial light consumption and PV 

electrical generation. Annually the BIPV window can cut down air conditioning power consumption by 28% for a 

typical Hong Kong office, compared to the conventional single absorptive glass window; (Chow et al., 2009). The 

authors also stated that high efficiency thin-film solar cells could facilitate the uptake of PV double-pane windows. 
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From a monetary point of view, (Ng and Mithraratne, 2014) showed that with government subsidies certain PV 

modules with high efficiencies are cheaper to install than conventional double-glazed windows.  

 

However on the basis of litterature review, it appears that no work in surveyed papers was reported on mixed 

convection in the PV windows integrated on the facade of buildings. None of the surveyed papers however showed 

the interrelated influence of the thermal efficiency or the electrical efficiency of the solar PV cells in the ventilation 

process in the room. Thereafter, due to the practical importance of this problem in a wide variety of engineering 

applications of passive cooling, thermal comfort.  Hence the subject needs further effort to improve our knowledge 

in this field.  The aim of this study is to explore the possibility of using the small sized window openings as solar 

chimneys for passive cooling in buildings. 

 

The object of the present paper is to   study numerically a mixed convection problem in a small-sized solar chimney, 

specially having   a variable absorber height(PV window) heated from the front top solar PV cells plate with a 

constant flux.  In this analysis, the air flow enters the PVwindow through an inside opening size in the room 

andleaves from the outlet opening size. Then it is very important to know the air movement or temperature 

distribution inside the PV Tromb wall windowand the PV cells’ electrical efficiency. 

 

Mathematical Formulation:- 

Physical Model and Governing Equations:- 

 

 

 

  

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

Fig.1:- Physical model 

 

The geometrical configuration deals with a simple room with length Land height hmounted on the left side of the 

vertical parallel plates of the chimney. The chimney is designed as a solar collector with plate separation dand height 

h. The PV/T collector is composed of four elements: the front glass cover, the semi-transparent photovoltaic cells 

(PV), the air flow, the absorber plate. The collector acts as an exhaust fan by sucking room air and venting it out 

during sunshine hours. In the system, the PV panel absorbed the incident solar radiation and transfers heat to air in 

the gap by convection and radiation phenomena.  The temperature of the absorber plate   with variable height (h1), 

rises and in turn, together with the PV module, heats up the air in the gap. The right side cold wall is maintained at 

the ambient temperature, the upper horizontal wall   and the floor of the room are assumed perfectly insulated and 

adiabatic. The physical system is sketched in fig1. 

 

The non dimensional set of the governing equations (continuity, momentum and energy equations) for a two-

dimensional, incompressible laminar flow are the following: 
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The stream function and the vorticity are related to the   velocity components by the   following expressions: 

𝑈 =
𝜕𝜓

𝜕𝑌
 ;   𝑉 = −

𝜕𝜓

𝜕𝑋
   and   𝜔 =  

𝜕𝑉
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−
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 (5) 
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𝜇
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𝜆Ѵ2 (6) 

 

Initial and Boundary Conditions:- 

By introducing the non dimensional parameters into the physical boundary conditions illustrated in fig.1, the 

following non dimensional boundary conditions are obtained: 

𝜃 = 0;  𝑈 = 𝑉 = 𝜔 = 𝜓 = 0  𝑎𝑡𝜏 = 0 

𝑎𝑡𝜏 > 0 
The boundary conditions, associated with the problem are as follows: 

𝑋 = 𝑆𝑎𝑛𝑑 0 𝑌
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Heat Transfer:- 

From the engineering viewpoint, the most important concern is heat transfer through the PV cells modules, the 

heated walls. These are best represented by Nusselt number. The local Nusselt number on the front side plate and the 

inner absorber plate of the chimney are given by:                                                                                               

𝑋 = 0 𝑎𝑛𝑑 0 𝑌𝐴 ∶  NuPV  Y =
∅𝑑

𝜆 𝑇𝑃𝑉 (0,𝑌)−𝑇𝑎 
 =

1

𝜃𝑃𝑉  0,𝑌 
   (9) 

𝑋 = 𝐾𝑎𝑛𝑑𝐷𝑌𝐴: Nuabs (Y) =  
∅d

λ Tabs  K ,Y  −Ta 
 =

1

θabs  K ,Y 
(10) 

 

The electrical efficiency of the solar PV cells is given as follows: 


𝑒𝑙

= 
𝑟𝑒𝑓

+ 
𝑝𝑣

 𝑇𝑃𝑉 −  298 + 𝛾 log  
∅

1000
  (11) 

𝑇𝑃𝑉 =
1

𝐻
 𝑇𝑃𝑉 0,𝑦 

𝐻

0
𝑑𝑦    (12) 

 

The mass flow rate in the channel is expressed: 

𝑚 = 𝜌𝑉0  𝑊 𝑋, 𝐴 
𝐾

0
𝑑𝑋  (13) 

Where  𝑇𝑃𝑉  is the average absolute temperature of the PV plate 

 

Numerical Method:- 

The non linear partial differential governing equations, (1-3), were discretized using a finite difference technique. 

The first and second derivatives of the diffusive terms were approached by central differences while a second order 

upwind scheme was used for the convective terms to avoid possible instabilities frequently encountered in mixed 

convection problems. The integration of equations (2-3) was assured by theThomas algorithm. At each time step, the 

Poisson equation, Eq. (4), was treated by using the Point Successive Under-Relaxation method (PSUR) with an 

optimum under-relaxation coefficient equal to 0.8 for the uniform grid (101×101) adopted in the present study. 

Convergence of iteration for stream function solution is obtained at each time step .The following criterion is 

employed to check for a steady-state solution. Convergence of solutions is assumed when the relative error for each 

variable between consecutive iterations is recorded below the convergence criterion ε such that    ∅𝑖 ,𝑗
𝑛+1 − ∅𝑖 ,𝑗

𝑛  /

∅𝑖 ,𝑗
𝑛+1 < 10−5  where 𝜙 stands for ψ,Ѳ, 𝜔, n refers to time and i and j refer to space coordinates. The time step used 

in the computations is 1.10
-5

. Grid independency solutions are assured by comparing different grid meshes for the 

highest Grashof and Reynolds numbers used in this work (Gr =10
6
 and Re = 200) in tab1. The vorticity 

computational formula of (Woods, 1954) for approximating wall vorticity was used:𝜔𝑃 =
1

2
𝜔𝑃+1 −

3

∆2
 𝜓𝑃+1 −

𝜓𝑃 , where𝜓𝑃   and   𝜓𝑃+1  are stream function values at the points adjacent to the boundary wall; n the normal 

abscise on the boundary wall. 

 

Tab.1:-Grid independency solutions 

stage Gridsize ѲPVmax 
Change(%) NusPVmoy Change(%) 

M=100 

N varied 

82X102 0.12504 - 20,34426 - 

102X102 0.12496 0.06398 20,30866 0.17499 

122X102 0.12483 0.10403 19,96541 1.69017 

N=100 

M varied 

102X82 0.12598 - 20,31443 - 

102X102 0.12496 0.01588 20,30866 0.02840 

102X122 0.12470 0.20807 20,23774 0.34921 

 

Results and Discussion:- 
Validation:- 

In order to test the computer code developed for this study, the problem of  a ventilated cavity heated by a uniform 

heat flux from its vertical left wall while the remaining walls are considered perfectly insulated was studied.  Very 

good agreement is obtained between the test problem solution and the ventilated cavity solutions according to the 

work of (Raji et al., 2008) . Where the system is submitted to an imposed flow of fresh air, parallel to the horizontal 

walls, entering and leaving the cavity from two opposing openings located at the middle of the vertical plates, with 

no slip boundary conditions applied to all the walls.  The Reynolds number, Re was set at10, for  Raleigh number  

Ra set at0 .The numerical  analysis predicted values of streamlines and isotherms together with ventilated cavity 

results are shown in fig.2. 
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Fig.2:- Comparison of streamlines and isotherms 

 

Flow and Thermal Fields ’Characteristics:- 
In the solar chimney integrated at the south façade of the building, the temperature distribution and the flow fields of 

the inlet jet and buoyancy force which induce natural convection have been analyzed numerically. The effect of 

Reynolds number on the flow structureand temperature distribution is shown in Fig.3 (a–c). Thestreamlines and the 

isotherms are presented for steady stateflows obtained for Gr = 10
4
 and values of the Reynoldsnumber ranging 

between 20 and 100. For Re=20, the analysis of the streamlinesin fig.3 (a) reveals a complex structure at the bottom 

part of the chimney where the simultaneous presenceof a closed cells and the open lines are observed.  Fig.3 (a-c) 

indicates the fluid flow patterns inside the room and the chimney. As shown, the streamline contours exhibit the 

circulation patterns as the fluid motion which is affected by PV cells and the absorber heated plates.  The flow 

characteristics show the simultaneous existence  of the natural convection   cells and the open lines  of the forced 

convection for the low values of the Reynolds number at the outlet of the  chimney  . The direction of flow, due to 

the thermal buoyancy force, is clockwise in this geometry as observed in the channels. The plot shows that from the 

bottom of the chimney, the inlet air flow converges especially towards the active PV cells plate which is heated by 

uniform flux, and the buoyancy forces drive the heated air to the outlet of the chimney. For increasing Reynolds 

number, the upper closed cells appear in the room near    the entry opening, above the open lines. In fact, the heated 

portion of the absorber plate, located above the opening of the chimney, imposes a clockwise circulation. The 

distribution of the temperature field shows that the room space far from the chimney is at the temperature of the 

external flow. The upper closed cells will play an increasingly important role by increasing Re sincethe more intense 

is the forced flow, the more important is its negative (positive) effect on the natural convection flow in the room and 

in the upper (lower) part of the solar chimney. When the forced flow overcomes the effect of natural convection in 

the chimney, the open lines are aspired by the solar PV cells    and the absorber heated plates as indicated in Fig.3 

(c)for Re = 100.  
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Fig.3:-Streamlines and isotherms obtained for Gr =10

4
   and different values of Re: (a) Re=20, (b) Re=50; (c) 

Re=100 

 

The corresponding isotherms are tight in the vicinity of the solar cells and the absorber heated plates testifying to a 

noticeable increase in convective heat exchange. A further increase of the Reynolds number acts by increasing the 

aiding role of forced and natural convection in the chimney integrated with thesouth façade of the building. Hence, 

the intensification of the forced flow leads to an increase in the role played by the open lines as shown in Fig. 3(b–

c). 
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Fig.4:- Variation of   vertical component of velocity   for various Reynolds numbers 
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Fig.5:-Variation of mean temperature of PV cells and absorber plates versus Reynolds number 
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the room is maintained at ambient temperature and cold due to passive cooling. Consequently, fig.5 (a-b) showed 

that the mean temperature of the PV cells and the absorber heated plates are both decreasing functions of Reynolds 

number.    

 

Fig.4 indicates that the outlet velocity is an increasing function of Reynolds number. Then, the outlet airflow 

velocity increases and overtakes a maximal value in the middle of the width of the chimney before decreasing   to 

attain the minimal value near the insulated absorber plate as shown in fig.4.  
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Fig.6 (b) indicates, except the fluctuations near the chimney entry opening, the dimensionless temperature along the 

absorber plate is an increasing function of Reynolds number. Otherwise,the dimensionless temperature along the 

heated PV cells plate decreases firstly at its   bottom before increasing to reach to the maximum   value and again 

decreasing to attain the minimal value, indicated in fig.6 (a) for a fixed Reynolds number. This tendency is 

illustrated in fig.7 (a) in which local Nusselt number is defined as the inverse value of the dimensionless 

temperature.   
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Fig.7:-Variation of local Nusselt number along the PV cells and absorber plates for various Reynolds numbers 

 

Hence, the local Nusselt number along the PV cells plate, for a fixed Reynolds number, increases to reach to the 

maximal value, before decreasing and then increasing again to attain the same maximum value.  
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Fig.8:-Variation ofthe PV cells’ electrical efficiency and the mass flow rate versus Reynolds number 

 

This situation can be explained by the fact that at the entry opening of the chimney the PV cells plate as the absorber 

plate are cooledby fresh air. This is the fluctuations observed of the local Nusselt number along the absorber plate 

before decreasing along the heated wall, as shown in fig.7 (b).   Fig. 8 (a-b) indicates respectivelythe variation of the 

PV cells 'electrical efficiency and mass flow rate versus Reynolds number.  Both, mass flow rate as the PV cells’ 

electrical efficiency are increasing functions of Reynolds number. 

 

Effect of Grashof Number:- 

In order to understand the effect of Grashof number on   fluid flow and heat transfer phenomena, a parametric   

study of  Grashof number  varying from 10
3
 to 10

6
 is carried out for a fixed Reynolds number Re=100.  
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At the low value of the Grashof number, such as Gr=10
3
, the forced convection due to the driven force dominates 

the flow structure in the integrated solar chimney, fig. 9(a). At this order of Grashof number, the inertia force of the 

fluid is dominant compared to the buoyancy force. As shown by streamlines in Fig. 9(a-c), air circulation inside the 

chimney is very weak at lowGrashof number and increases with the Grashof number.  A high insolation effect 

increases the air circulation inside the chimney and .the isotherms become more distorted. As the  Grashof number 

increases to Gr = 10
4
,  the  Richardson number Ri=1 ,the inertia and buoyancy forces balance each other, which then 

results in a mixed convection, fig.3 (c). When the Grashof number further increases to Gr = 10
6
, (Ri=100) the 

buoyancy force becomes the dominant mechanism driving the convection of the air, and the flow is in the regime of 

natural convection in the room and chimney. The closed cells appear in the chimney and the back flow phenomenon 

is observed, Fig. 9(c). The isotherms plotted for increasing Grashof number are represented in fig.9 (a-c). One can 

observe that the isotherms are greatly distorted near the solar PV cells andthe absorber plates. This tendency 

indicates the effect of the increase intheGrashof number on the heat transfer process.Fig.10 (a-b) shows the variation 

of the mean dimensionless temperature along the active   plates versus the heated flux. The dimensionless 

temperature increases and reaches the maximum value   for the low value of the heated flux before decreasing for 

the high intensity of incident solar radiation at the fixed Reynolds number.  Hence in fig.11 (a-b), the local Nusselt 

number along the PV cells and the absorber plates is an increasing function of Grashof number. In fig.12 (a), the 

mass flow rate is decreasing, when the incident solar radiation is increasing. 
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Fig.10:-Variation of mean dimensionless temperature along the PV cells and the absorber plates versus heated flux 
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Fig.11:-Variation of local Nusselt number   along the PV cells and the absorber plates for various Grashof number 

 

This situation indicates that for increasing grashof number or incident heated flux, the back flow phenomenon 

appears in the chimney. The same results are obtained by (S.L.Sinha et al.2000) in the numerical simulation of a 

two-dimensional room air flow with and without buoyancy that the intensity of the recirculation zone in the cavity 

increases as Grashof number Gr increases to 10
8
.In fig.12 (a) the vertical component of the velocity decreases at the 

outlet of the chimney, when the Grashof number increases. This variation is illustrated   by the back flow 

phenomenonestablishmentforincreasingGrashof number.  Consequently, the mass flow rate is decreasing when the 

Grashof number related to the incident solarradiation is increasing, fig.12 (b). 
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Fig. 12:-Variation of vertical velocity component and the   mass flow rate versus the heated flux 

 

Effect of Chimney Width (d), Absorber Variable Height (H1) and InletOpening (e):- 

Fig.13 (a-b) shows the streamline and isotherm plots in the chimney and room.For H1/d equal to 4, the Raleigh 

Bernard natural convective cells appear in the room above the open lines of forced convection.   
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Fig.13:- Streamlines and isotherms obtained for Re =100, Gr=10
4
 and different value of   absorber plate height: (a) 

H1/d=4, (b) H1/d=3, (c) H1/d=2 

 

The simultaneous existence of the clockwise cells and the open cells indicates that mixed convection is established. 

Then for the low value of the absorber height in the chimney, the big upper closed cells disappear in the room and 

passive cooling is obtained, hence forced convection is dominant. The natural convective recirculation cells located 

at the entry of the chimney disappear progressively in favor for the open lines in the chimney, when the height of the 

absorber plate decreases. This situation indicates the principal importance of the PV Tromb wall window 

configuration. The inner part of the PV cells plate becomes more transparent to the sunshine in the room and plays a 

light role during day time.  The isothermal lines are very distorted   in the chimney and are more tightened at the 

vicinity of the PV cells heated plate testifying to a noticeable increase in convective heat exchange, when the 
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absorber plate height H1 is increasing. Fig.14, indicates that the outlet velocity is decreasing in the first middle of the   

width of the chimney when the absorber plate height is increasing, before   increasing in the second middle of the 

width of the chimney to reach the maximal value and then decreasing along the     upper part   of the absorber plate 

to attain the minimal value. This tendency shows that the no sleep boundary condition along the absorber plate is 

verified. In fig.15 (a), the local Nusselt number along the PV cells plate, increases when the height of the absorber 

plate increases and then decreases to attain the minimal value, before increasing again to reach the high value at the 

top. This   heat transfer phenomenon illustrates the main interest of the variable absorber height in the PV Tromb 

wall window. The variation of the absorber plate height   induces the variation of the solar chimney entry opening 

(eW). The fig.15 (b)   shows that theair temperature in the chimney is stratified along the width of the chimney.  

Fig.16 (a-c) shows the chimney width (d) effect on   streamline and the isothermal line distribution. One can observe 

that for the low value of the chimney width (d), the big closed cells between the absorber plate and the cold wall of 

the room appears. There is a presence of the parallel open lines   in the chimney. 
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Fig.14:-Variation of vertical component of velocity for various absorber plate height 
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Fig.15:- Variation of local Nusselt number and the temperature along the PV cells plate and the width the chimney 

for various absorber plate height 

 

The simultaneous existence of the closed recirculation cells and open lines prove mixedconvection in the room. The 

isotherm patterns are very tight in the vicinity of the PV cells plate, consequently; thesolar PV cells are more heated. 
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One can note that, when the width (d) increases, the intensityof recirculation disappears progressively in the room, 

and then appears in the solar chimney the closed cellsof natural convection and the back flow phenomenon 

manifestation.  
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Fig.16:-Streamlines and isotherms obtained for Re =100, Gr=10
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The small closed cells located at the entry of the chimney, increases progressively and prevents the open lines from 

exiting through the chimney.  Fig.17(a-b) and the fig.18 (a-b) show  respectively that  the  variation of the local  

Nusselt number along the PV  cells and  absorber plates  is  significantly affected by the chimney width (d) and the 

inlet opening size  (e) effects. 
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Fig.17:-Variation of local Nusselt number along the PV cells and absorber plates for various values of the chimney 

width 
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(b) Absorber plate 

Fig.18:- Variation of local Nusselt number along the PV cells and absorber plates for various values of the inlet 

opening size 

 

Conclusion:- 
The numerical investigation in this study allowed the authors to know that  the air flow in the hybrid photovoltaic-

thermal chimney   integrated with the south façade  of the building for the lowest value of Reynolds number  is 

natural convection while it is  forced convection  for the highest value of  Reynolds number.The air flow role is to 

extract the excess heat along the solar PV cells and absorber plates in thechimney. The flow analysis in the solar 

chimney has given severalpossibilitiesforutilizingPVTrombwallwindow as solar chimney for the low values of inlet 

velocity or Reynolds number.  This device gives possibilities to reduce the energy charge for air conditioning 

andprovides passive cooling in the room. Within the investigated parameter ranges, the following conclusions can be 

drawn: 

 For the low value of the chimney width, the solar PV cells are more heated, hence the electrical efficiency 

decreases. 

 For the low value of the absorber plate height, there is no circulation  closed cells in the room 

 The solar chimney is able to provide ventilation to the building during daylightwithout recirculation of room air.  

 PV Tromb wallwindowgives the possibility to decrease energy consumption in buildings and provides passive 

cooling.   

 PV Tromb wall window uses solar energy to ventilate and provide thermal comfort in buildings. 

 

Nomenclature:- 

CP                                        Specific heat  (J. kg
-1

.K
-1

) 

H Building  height (H= HA+HB+e)  (m) 

L Building length (m) 

H1 Absorber  height (m) 

d Chimney  width (m) 

A Aspect ratio  of the chimney (A =  H/d) 

S Aspect ratio of the building (S=L/d) 

eW Chimney entry opening(m) 

e Inlet opening size(m) 

D Aspect opening ratio (D = e/d) 

K Chimney  width aspect ratio (K=(L-d)/d) 

Dm Mass flow rate ( Kg.s
-1

) 

𝑞𝑟1 Net  radiative flux    between PV  plate  and  absorber plate (W.m
-2

)                                                                                                            

𝑞𝑟2 Net  radiative flux    between  absorber  plate and PV plate (W.m
-2

) 

g Gravitational acceleration  (m.s
-2

) 

n Coordinate in normal direction 

t Time  (s) 

T Temperature  (K) 

Ta Ambient air temperature (K) 

u, v Velocity component in x and y  directions (m.s
-1

) 

U, V Dimensionless velocity component in X and Y  directions; U= u/u0, V = v/u0 



ISSN: 2320-5407                                                                                    Int. J. Adv. Res. 6(8), 911-926 

925 

 

W Outlet velocity 

u0 Air inlet velocity (m.s
-1

) 

x,y Coordinates defined in fig. 1 (m) 

X,Y Dimensionless spatial coordinates; X = x/d, Y = y/d 

Re 
Reynolds number :  𝑅𝑒 =

𝜌𝑣0 2𝑒  

𝜇
 

Pr Prandlt number :  𝑃𝑟 = 𝜇𝐶𝑝/𝜆 

Nu Nusselt number :   𝑁𝑢 =  
∅𝑑

𝜆 𝑇−𝑇𝑎  
 =

1

𝜃
 

Gr Grashof  number\ dimensionless𝐺𝑟 =
𝑔𝛽∅𝑑4

𝜆Ѵ2  

Ri Thermal Richardson number ( 2Re/GrRi  ) 

Greek symbols 

𝜃 Dimensionless temperature 𝜃 =  
𝜆 𝑇−𝑇𝑎  

𝑑∅
 

τ Dimensionless time       𝜏 =  
𝑣0𝑡

𝑑
 

𝛹 Dimensionless stream function:  𝛹 =
𝜓

𝑑𝑣0
 

𝜔 Dimensionless  vorticity:  𝜔 =  
𝛺𝑑

𝑣0
 

𝛺 Vorticity(s
-1

) 

𝜓 Stream function  (m.s
-2

) 

 Thermal expansion coefficient (K
-1

) 

ηel PV cells electrical efficiency (-) 

ηref PV cells  electrical efficiency at standard conditions(-) 

PV PV cells temperature coefficient  (K
-1

) 

γ PV cellssolarirradiance coefficient (-) 

 Density of the air  (kg.m
-3

)     

 Thermal diffusivity of the air (W.m
-1

.K
-1

) 

 Dynamic  viscosity of the air (kg .m
-1

.s
-1

) 

 Solar radiation (W.m
-2

) 

𝜈 Cinematic  viscosity   (m
2
.s

-1
) 

𝛂P Absorptance  coefficient of the  absorber plate (-) 

𝛕gl Transmittance  coefficient of the glaze (-) 

𝛂PV PV cells absorptance coefficient  (-) 

𝛕PV PV cells transmittance  coefficient  (-) 

subscripts 

PV PV module 

Abs  Absorber Plate 

f Fluid (air) 

a-Si Amorphous silicon  

 

moy Mean 

c-Si Cristalin silicon 

BIPV Building integratedphotovoltaic 

 

HVAC      Hour Volume Air Conditionning 
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