

Journal homepage: http://www.journalijar.com

INTERNATIONAL JOURNAL OF ADVANCED RESEARCH

RESEARCH ARTICLE

COMPARATIVE STUDY OF PRINCIPAL COMPONENTS AND FACTOR ANALYTIC TECHNIQUES

REUBEN Benham Zangaluka and TORSEN Emmanuel

Department of Statistics and Operations Research, Modibbo Adama University of Technology, Yola, Adamawa-Nigeria.

Manuscript Info	Abstract
Manuscript History:	Principal Components and factor analytic techniques take large number of
Received: 25 April 2015 Final Accepted: 14 May 2015 Published Online: June 2015	variables and reduce them to much smaller number of coherent subsets such that variables within a subset are related to one another but independent to those in other subsets. These methods summarize the pattern of correlation between observed variables. In this paper, principal components and factor
Key words:	analytic techniques are compared using data from Nigerian Consumption Pattern 2009/2010. The results revealed that factor analytic techniques
Principal Components, Factor analytic techniques, Variance, Correlation	preserve correlation more than principal components, while on the other hand, principal components preserve variance more than factor analytic techniques. We therefore conclude that factor analysis should be used when
*Corresponding Author	interest is placed on making statements about the factors that are responsible for a set of observed responses, and principal component analysis should be used when interest is based on performing data reduction.
REUBEN, Benham	
Zangaluka	Copy Right, IJAR, 2015,. All rights reserved
•••••	

INTRODUCTION

Factor Analysis (FA) is often confused with Principal Component Analysis (PCA), a similar statistical procedure. However, there are significant differences between the two: factor analysis and principal component analysis will provide somewhat different results when applied to the same data. The purpose of PCA is to derive a relatively small number of components that can account for the variability found in a relatively large number of measures. This procedure, called data reduction, is typically performed when a researcher does not want to include all the original measures in analysis but still wants to work with the information that they contain (DeCoster, 1998). On the other hand, the primary objectives of factor analysis are to determine the number of common factors influencing a set of measures, and the strength of the relationship between each factor and each observed measure. Because it is a variable reduction procedure, principal component analysis is similar in many respects to exploratory factor analysis. In fact, the steps followed when conducting a PCA, are virtually identical to those followed when conducting an exploratory factor analytical techniques. However, there are significant conceptual differences between the two procedures, and it is important that we do not mistakenly claim that we are performing factor analysis when actually performing principal component analysis. The most important conceptual difference between the procedures deals with the assumption of an underlying causal structure: factor analysis assumes that the co-variation in the observed variables is due to the presence of one or more latent variables (factors) that exert causal influence on those observed variables (Kline, 1994). In contrast, PCA makes no assumption about the underlying causal model. PCA is simply a variable reduction procedure that (typically) results in a relatively small number of components that account for most of the variance in a set of observed variables.

Factor analysis, like principal component analysis, attempts to explain a set of data in terms of a smaller number of dimensions that one begins with, but the procedures used to achieve this goal are essentially different in the two methods. Factor analysis unlike principal component analysis, begins with a hypothesis about the covariance (or correlational) structure of the variables (Landau and Everitt, 2004).

Timm (2002) concluded that the biggest difference between principal components and factor analysis comes from model philosophy. Factor analysis imposes a strict structure of a fixed number of common (latent) factors whereas the principal component analysis determines a given number of components in decreasing order of importance.

Simplistically, though, factor analysis derives a mathematical model from which factors are estimated, whereas PCA merely decomposes the original data into a set of linear variate (Dunteman, 1989). Guadagnoli and Velicer (1988) concluded that the solutions generated from principal component analysis differ little from those derived from factor analytic techniques.

Brown (2009) shows what PCA and FA are, and in part, how they should be presented and interpreted. In the process, he had defined and exemplified loadings, communalities, proportion of variance, components, factors, PCA and FA. He also went further to explore the basic mathematical and conceptual differences between PCA and FA, and discussed how researchers decide on whether to use PCA or FA.

From an implementation point of view, the PCA is based on a well-defined, unique algorithm (spectral decomposition), whereas fitting a factor analysis model involves a variety of analysis procedure which opens the door for subjective interpretation and yields therefore a spectrum of results. This data analysis philosophy makes factor analysis difficult especially if the model specification involves cross-validation and a data-driven selection of the number of factors (Simar and Hardle, 2007). PCA solved a problem similar to the problem of common factor analysis, but different enough to lead to confusion (Richard, 2004).

Though there are some important conceptual differences between PCA and FA that have been investigated by a number of researchers, this paper attempts to accentuate some of these differences by highlighting how each tool behaves at each stage of computation.

2.0 MATERIALS AND METHODOLOGY

2.1 SOURCE OF DATA

The data used in this research were secondary data on non-food commodity expenditure for 36 states of Nigeria and the Federal Capital Territory (FCT), Abuja. The data were sourced from the National Bureau of Statistics, Preliminary Report of Consumption Pattern in Nigeria for the year 2009/2010.

The variables are defined as follows: X_1 = Clothing and footwear; X_2 = Rent; X_3 = Fuel/Light; X_4 = Household Goods; X_5 = Health Expenditure; X_6 = Transport; X_7 = Education Expenditure; X_8 = Entertainment; X_9 = Water; X_{10} = other services

2.2 DATA ANALYSIS

Principal component analysis and factor analysis were conducted on the data using SPSS 16.0. The variables were measured on the same experimental unit of percentages of non-food commodity expenditure of 36 states of the Federal Republic of Nigeria and the Federal Capital Territory (FCT), Abuja. Correlations between variables were obtained. Kaiser criterion was used as the method for determining the optimal number of factors or components for inclusion. Principal components extraction and Maximum likelihood extraction were used to extract components and factors respectively. Varimax orthogonal rotation which produces uncorrelated components/factors was used to rotate factors or components to obtain final solution that aid interpretation.

After obtaining the output of both analyses, the solutions were used to compare the computational efficiency of principal components analysis and factor analysis based on the following criteria:

- (i) **Data Fitness:** Residuals of the model are the differences between the matrix based on the model and matrix based on observed data. SPSS 16.0 produces these residuals in the lower table of the reproduced matrix and it is expected to be relatively few of these values to be greater than 5% (Field, 2004). The higher the residuals the less fit a dataset is to the model.
- (ii) Variance Maximization: The eigenvalue associated with each component (factor) represent the variance explained by that particular component/factor. A model is consistent if the cumulative value of the retained components (factors) is the same before and after rotation (Field, 2004). Rotation has the effect of optimizing the factor structure and its consequence is that the relative importance of the retained factors (components) is equalized.

Test of normality was also conducted on the data and it was found that most variables are normally distributed as their significances are greater than 5% (see Appendix I).

3.0 RESULTS AND DISCUSSION

Principal component analysis and factor analysis (using maximum likelihood factor extraction) display the same result for descriptive statistics as both analyses are performed by examining the patterns of correlations or covariation between the observed measures.

Table 1: Eigenvalues and Communalities

Variables		P	CA	FA				
	Comp1	Comp2	Comp3	h^2	Factor1	Factor2	Factor3	h^2
X_1	-0.121	0.909	0.194	0.878	-0.072	0.978	-0.193	0.999
X_2	-0.227	-0.836	0.340	0.865	-0.224	-0.821	-0.524	0.999
X_3	-0.135	-0.046	-0.841	0.727	-0.046	-0.096	0.686	0.482
X_4	-0.916	0.152	-0.161	0.889	-0.961	0.160	0.222	0.999
X_5	0.131	0.696	0.514	0.766	0.129	0.586	-0.166	0.387
X_6	0.827	0.026	-0.206	0.727	0.772	-0.033	0.385	0.745
X_7	0.286	-0.563	0.359	0.528	0.221	-0.435	-0.137	0.257
X_8	0.543	0.333	-0.420	0.586	0.526	0.229	0.210	0.373
X_9	-0.285	-0.057	0.656	0.515	-0.159	-0.037	-0.487	0.264
X_{10}	0.941	0.007	0.31	0.886	0.923	-0.017	0.055	0.856
% of variance	0.3044	0.2458	0.1866	0.7368	0.2798	0.2253	0.1311	0.6362

Table 1 shows PCA and FA analyses with Varimax rotation, Eigenvalue ≥ 1 and the resulting loadings for the percentage of non-food commodities in Nigeria for the year 2009/2010. Observe that the first column has 10 variables as earlier defined, then the next three columns show the results for a PCA of the data, and the last three columns show corresponding results for an FA of the same data. Observe that the actual loadings differ for the PCA and FA. Note also that the pattern of relatively strong loadings are the same for both analyses, so in that sense, it made little difference which analysis was used. However, loadings, higher communalities, and ultimately the proportion of variance accounted for in the aggregate is 73.68% in PCA as opposed to 63.62% in FA. This is because FA excludes unique variances which are used in the PCA to contribute to higher loadings with the components in ways that are not present in FA.

Table 2: Total Variance Explained by Retained Components

	Initial Eige	envalues		Extraction Loadings	Sums	of Squared	Rotation Sums of Squared Loadings		
Component	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %
1	3.044	30.444	30.444	3.044	30.444	30.444	2.969	29.689	29.689
2	2.458	24.579	55.023	2.458	24.579	55.023	2.470	24.702	54.391
3	1.866	18.656	73.679	1.866	18.656	73.679	1.929	19.288	73.679
4	.753	7.526	81.204						
5	.637	6.372	87.576						
6	.545	5.450	93.025						
7	.336	3.357	96.382						
8	.250	2.500	98.882						
9	.111	1.112	99.994						
10	.001	.006	100.000						

Extraction Method: Principal Component Analysis.

Table 3: Total Variance Explained by Retained Factors

				Extract Loadin		of Squared	Rotation Sums of Squared Loadings		
Factor	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %
1	3.044	30.444	30.444	2.291	22.914	22.914	2.798	27.975	27.975
2	2.458	24.579	55.023	2.722	27.216	50.130	2.253	22.534	50.509
3	1.866	18.656	73.679	1.349	13.487	63.617	1.311	13.108	63.617
4	.753	7.526	81.204						
5	.637	6.372	87.576						
6	.545	5.450	93.025						
7	.336	3.357	96.382						
8	.250	2.500	98.882						
9	.111	1.112	99.994						
10	.001	.006	100.000						

Extraction Method: Maximum Likelihood.

Table 2 and Table 3 show the importance of the ten principal components (factors). Only the first three have eigenvalues over 1.00, and together these explain over 73% of the total variability in the data. While this figure remains the same after extraction using PCA, it differs by about 10% after rotation using FA (maximum likelihood) extraction.

Appendix II and Appendix III shows the reproduced correlation of PCA and FA respectively. The reproduced correlations matrix differs from those in the observed matrix because they stem from the model. Therefore, to assess the fit of the model we can look at the differences between the observed correlations and the correlations based on the model. The difference can be calculated as follows:

Residual = observed correlation – correlation from model.

Note that this difference is the value quoted in the lower half of the reproduced matrix (labeled residuals). Therefore, the lower half of the reproduced matrix contains the differences between the observed correlation coefficients and the ones predicted from the model. For a good model these values will all be small. In fact, most values should be less than 0.05 significant levels (Field, 2004). Rather than scan this huge matrix, SPSS 16.0 provides a footnote summary, which states how many residuals have absolute value greater than 0.05. For these data values there are 14 (31%) absolute values greater than 0.05 in FA and 23(51%) absolute values greater than 0.05 in PCA. There are no hard and fast rules about what proportion of residuals should be below 0.05; however, if more than 50% are greater than 0.05 we probably have grounds for concern (Field, 2004).

APPENDICES

Appendix I: Tests of Normality

	Kolmogorov-S	Smirnov ^a		Shapiro-Wilk			
Var.	Statistic	Df	Sig.	Statistic	Df	Sig.	
X1	.095	33	.200*	.977	33	.684	
X2	.116	33	.200*	.935	33	.049	
X3	.100	33	.200*	.957	33	.209	
X4	.145	33	.074	.945	33	.097	
X5	.170	33	.016	.953	33	.167	
X6	.100	33	.200*	.967	33	.406	
X7	.113	33	.200*	.940	33	.069	
X8	.165	33	.024	.754	33	.000	
X9	.119	33	.200*	.904	33	.007	
X10	.163	33	.026	.939	33	.065	

a. Lilliefors Significance Correction

There are a number of different extraction methods in factor analysis, unless there is a serious lack of multivariate normality, maximum likelihood extraction is the best among these method (DeCoster, 1998), hence the need to normality test.

The Kolmogorov-Smirnov and Shapiro-Wilk tests compare the scores in the sample to a normally distributed set of scores with the same mean and standard deviation. If the test is non-significant (p > 0.05) it tells us that the distribution of the sample is not significantly different from a normal distribution (Field, 2004).

The Appendix I includes the test statistic itself, the degrees of freedom and the significance value of the test. A significant value less than 0.05 indicate a deviation from normality. Both tests are highly non-significant, indicating that the distribution is normal.

^{*.} This is a lower bound of the true significance.

Appendix II: Reproduced Correlations (PCA)

Var	X1	X2	X3	X4	X5	X6	X7	X8	X9	X10
X1	.878 ^a	666	189	.217	.717	117	477	.160	.110	101
X2	666	.865 ^a	217	.027	437	279	.528	549	.335	209
X3	189	217	.727 ^a	.252	482	.060	314	.264	511	153
X4	.217	.027	.252	.889 ^a	097	721	406	379	.147	866
X5	.717	437	482	097	.766 ^a	.020	171	.091	.261	.144
X6	117	279	.060	721	.020	.727 ^a	.148	.544	372	.772
X7	477	.528	314	406	171	.148	.528 ^a	186	.186	.277
X8	.160	549	.264	379	.091	.544	186	.586 ^a	449	.501
X9	.110	.335	511	.147	.261	372	.186	449	.515 ^a	248
X10	101	209	153	866	.144	.772	.277	.501	248	.886 ^a
X1		020	035	034	122	047	.061	014	041	.008
X2	020		055	059	.013	068	149	.132	014	013
X3	035	055		072	.104	042	.093	.008	.230	.010
X4	034	059	072		.030	.059	.093	044	108	012
X5	122	.013	.104	.030		018	.090	.024	051	041
X6	047	068	042	.059	018		080	184	.040	067
X7	.061	149	.093	.093	.090	080		.025	134	065
X8	014	.132	.008	044	.024	184	.025		.114	066
X9	041	014	.230	108	051	.040	134	.114		.013
X10	.008	013	.010	012	041	067	065	066	.013	

Extraction Method: Principal Component Analysis.

a. Reproduced communalities

b. Residuals are computed between observed and reproduced correlations. There are 23 (51.0%) non redundant residuals with absolute values greater than 0.05.

Appendix III: Reproduced Correlations (FA)

Var	X1	X2	X3	X4	X5	X6	X7	X8	X9	X10
X1	.999 ^a	686	223	.183	.596	163	415	.146	.070	093
X2	686	.999 ^a	271	033	423	347	.380	416	.321	222
X3	223	271	.482a	.181	176	.232	063	.098	323	003
X4	.183	033	.181	.999 ^a	067	662	313	422	.039	878
X5	.596	423	176	067	.387 ^a	.016	203	.167	.039	.100
X6	163	347	.232	662	.016	.745 ^a	.133	.479	309	.734
X7	415	.380	063	313	203	.133	.257 ^a	012	.047	.204
X8	.146	416	.098	422	.167	.479	012	.373 ^a	195	.493
X9	.070	.321	323	.039	.039	309	.047	195	.264 ^a	173
X10	093	222	003	878	.100	.734	.204	.493	173	.856 ^a
X1		-2.325E-6	.000	-2.538E-6	.000	.000	.000	6.052E-5	.000	.000
X2	-2.325E-6		.000	-2.873E-6	.000	.000	.000	-4.266E- 5	.000	.000
X3	.000	.000		001	201	213	159	.174	.043	140
X4	-2.538E-6	-2.873E-6	001		.000	.000	-7.064E-5	.000	.000	-1.997E-5
X5	.000	.000	201	.000		014	.123	053	.171	.002
X6	.000	.000	213	.000	014		064	118	023	029
X7	.000	.000	159	-7.064E-5	.123	064		148	.004	.007
X8	6.052E-5	-4.266E-5	.174	.000	053	118	148		141	058
X9	.000	.000	.043	.000	.171	023	.004	141		061
X10	.000	.000	140	-1.997E-5	.002	029	.007	058	061	

Extraction Method: Maximum Likelihood.

Appendix IV: Correlation Coefficients

	Correlation Matrix										
	\mathbf{X}_1	X_2	X_3	X_4	X_5	X_6	X_7	X_8	X_9	X_{10}	
Variables											
X_1	1.000	668	181	.325	.579	336	371	.108	.074	247	
\mathbf{X}_2	668	1.000	339	153	360	245	.326	449	.352	100	
X_3	181	339	1.000	.052	347	.147	245	.406	311	039	
X_4	.325	153	.052	1.000	.104	608	393	398	.043	872	
X_5	.579	360	347	.104	1.000	228	038	.074	.232	069	
X_6	336	245	.147	608	228	1.000	.163	.350	372	.661	
X_7	371	.326	245	393	038	.163	1.000	160	.055	.297	
X_8	.108	449	.406	398	.074	.350	160	1.000	343	.435	
X_9	.074	.352	311	.043	.232	372	.055	343	1.000	262	
X_{10}	247	100	039	872	069	.661	.297	.435	262	1.000	

The correlation coefficients show the relationship between the observed measures. The correlation matrix of principal components is the same to those of factor analytical techniques. It is from this matrix that reproduced correlations for both techniques are estimated (see Appendix II and Appendix III).

4.0 CONCLUSION

Factor Analytical techniques (FA) preserve correlations more than Principal Component Analysis (PCA) with a small residuals of 31% which show that there is a very little difference between the reproduced correlations and

b. Residuals are computed between observed and reproduced correlations. There are 14 (31.0%) non redundant residuals with absolute values greater than 0.05.

a. Reproduced communalities

the correlations actually observed between the variables against the residuals of PCA which stands at 51%. PCA preserve more variability of the original data set at 73.68% over FA which preserves variability of the original data set at 63.62%.

While FA preserves more correlations than PCA, the later accounts for more variance in the observed variables than the former. Therefore, when it is needful to do a data reduction, PCA should be used; but when a statement about the underlying causal structure is desirable, FA should be used.

This work has further deepened the discrepancies between PCA and FA, thereby providing assistance to researchers to ease their decision making as to which technique to use apriori.

REFERENCES

Brown, J.D. (2009): Principal Component Analysis and Exploratory Factor Analysis-Definition, Differences and Choices: <u>JALT Testing and Evaluation</u>. <u>SIG Newsletter</u>. Vol. 13, Number 1, PP 26-30. Retrieved April 16, 2012. Retrieved from Shiken database.

DeCoster, J. (1998). Overview of Factor Analysis. PP 1-3. Retrieved June 14, 2011, from http://www.stat-help.com

Dunteman, G. H. (1989). <u>Principal Component Analysis: Quantitative Applications in the Social Sciences.</u> Newbury Park, California: Sage Publication. PP 7

Field, A. (2004). Discovering Statistics Using SPSS, Second Edition.: Sage Publications. London. PP 641-665

Guadognoli, E. and Velicer, W.F. (1988). <u>Relation of Sample Sizes to the Stability of Component Patterns</u>. Psychological Bulletin. PP 265-275.

Kline, P. (1994). An Easy Guide to Factor Analysis. London: Routledge.

Landau, S. and Everitt, B.S. (2004). <u>Statistical Analysis Using SPSS</u>. Chapman and Hall/CRC Press LLC. London. PP 213.

National Bureau of Statistics (2010). <u>Consumption Pattern in Nigeria (2009/2010).</u> Retrieved March 20, 2010, from <u>www.nigerianstat.gov.ng</u>

Richard, B. D. (2004): Factor Analysis. Retrieved July 2004, from http://www.chass.ncsu.edu/garson

Simar, L. and Hardle, W. (2007). <u>Applied Multivariate Statistical Analysis</u>. Berlin Heidelberg: Springer-Verlag. PP 265

Timm, N.H. (2002). Applied Multivariate Analysis: Springer-Verlag Inc. New York. Page 445.