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Principal Components and factor analytic techniques take large number of 

variables and reduce them to much smaller number of coherent subsets such 

that variables within a subset are related to one another but independent to 

those in other subsets. These methods summarize the pattern of correlation 

between observed variables. In this paper, principal components and factor 

analytic techniques are compared using data from Nigerian Consumption 

Pattern 2009/2010. The results revealed that factor analytic techniques 

preserve correlation more than principal components, while on the other 

hand, principal components preserve variance more than factor analytic 

techniques. We therefore conclude that factor analysis should be used when 

interest is placed on making statements about the factors that are responsible 

for a set of observed responses, and principal component analysis should be 

used when interest is based on performing data reduction. 
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INTRODUCTION   
 

Factor Analysis (FA) is often confused with Principal Component Analysis (PCA), a similar statistical procedure. 

However, there are significant differences between the two: factor analysis and principal component analysis will 

provide somewhat different results when applied to the same data. The purpose of PCA is to derive a relatively 

small number of components that can account for the variability found in a relatively large number of measures. 

This procedure, called data reduction, is typically performed when a researcher does not want to include all the 

original measures in analysis but still wants to work with the information that they contain (DeCoster, 1998). On 

the other hand, the primary objectives of factor analysis are to determine the number of common factors 

influencing a set of measures, and the strength of the relationship between each factor and each observed measure. 

Because it is a variable reduction procedure, principal component analysis is similar in many respects to 

exploratory factor analysis. In fact, the steps followed when conducting a PCA, are virtually identical to those 

followed when conducting an exploratory factor analytical techniques. However, there are significant conceptual 

differences between the two procedures, and it is important that we do not mistakenly claim that we are 

performing factor analysis when actually performing principal component analysis. The most important 

conceptual difference between the procedures deals with the assumption of an underlying causal structure: factor 

analysis assumes that the co-variation in the observed variables is due to the presence of one or more latent 

variables (factors) that exert causal influence on those observed variables (Kline,1994). In contrast, PCA makes 

no assumption about the underlying causal model. PCA is simply a variable reduction procedure that (typically) 

results in a relatively small number of components that account for most of the variance in a set of observed 

variables.  
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Factor analysis, like principal component analysis, attempts to explain a set of data in terms of a smaller number 

of dimensions that one begins with, but the procedures used to achieve this goal are essentially different in the 

two methods. Factor analysis unlike principal component analysis, begins with a hypothesis about the covariance 

(or correlational) structure of the variables (Landau and Everitt, 2004). 

Timm (2002) concluded that the biggest difference between principal components and factor analysis comes from 

model philosophy. Factor analysis imposes a strict structure of a fixed number of common (latent) factors whereas 

the principal component analysis determines a given number of components in decreasing order of importance. 

Simplistically, though, factor analysis derives a mathematical model from which factors are estimated, whereas 

PCA merely decomposes the original data into a set of linear variate (Dunteman, 1989). Guadagnoli and Velicer 

(1988) concluded that the solutions generated from principal component analysis differ little from those derived 

from factor analytic techniques. 

Brown (2009) shows what PCA and FA are, and in part, how they should be presented and interpreted. In the 

process, he had defined and exemplified loadings, communalities, proportion of variance, components, factors, 

PCA and FA. He also went further to explore the basic mathematical and conceptual differences between PCA 

and FA, and discussed how researchers decide on whether to use PCA or FA. 

From an implementation point of view, the PCA is based on a well-defined, unique algorithm (spectral 

decomposition), whereas fitting a factor analysis model involves a variety of analysis procedure which opens the 

door for subjective interpretation and yields therefore a spectrum of results. This data analysis philosophy makes 

factor analysis difficult especially if the model specification involves cross-validation and a data-driven selection 

of the number of factors (Simar and Hardle, 2007). PCA solved a problem similar to the problem of common 

factor analysis, but different enough to lead to confusion (Richard, 2004). 

Though there are some important conceptual differences between PCA and FA that have been investigated by a 

number of researchers, this paper attempts to accentuate some of these differences by highlighting how each tool 

behaves at each stage of computation. 

 

2.0 MATERIALS AND METHODOLOGY 
2.1 SOURCE OF DATA 

The data used in this research were secondary data on non-food commodity expenditure for 36 states of Nigeria 

and the Federal Capital Territory (FCT), Abuja. The data were sourced from the National Bureau of Statist ics, 

Preliminary Report of Consumption Pattern in Nigeria for the year 2009/2010. 

The variables are defined as follows: X1= Clothing and footwear; X2 = Rent; X3 = Fuel/Light; X4 = Household 

Goods; X5 = Health Expenditure; X6 = Transport; X7 = Education Expenditure; X8= Entertainment; X9 = Water; 

X10 = other services 

2.2 DATA ANALYSIS 

Principal component analysis and factor analysis were conducted on the data using SPSS 16.0. The variables were 

measured on the same experimental unit of percentages of non-food commodity expenditure of 36 states of the 

Federal Republic of Nigeria and the Federal Capital Territory (FCT), Abuja. Correlations between variables were 

obtained. Kaiser criterion was used as the method for determining the optimal number of factors or components 

for inclusion. Principal components extraction and Maximum likelihood extraction were used to extract 

components and factors respectively. Varimax orthogonal rotation which produces uncorrelated 

components/factors was used to rotate factors or components to obtain final solution that aid interpretation. 

After obtaining the output of both analyses, the solutions were used to compare the computational efficiency of 

principal components analysis and factor analysis based on the following criteria: 

(i) Data Fitness: Residuals of the model are the differences between the matrix based on the model and 

matrix based on observed data. SPSS 16.0 produces these residuals in the lower table of the reproduced 

matrix and it is expected to be relatively few of these values to be greater than 5% (Field, 2004). The 

higher the residuals the less fit a dataset is to the model. 

(ii) Variance Maximization: The eigenvalue associated with each component (factor) represent the 

variance explained by that particular component/factor. A model is consistent if the cumulative value of 

the retained components (factors) is the same before and after rotation (Field, 2004). Rotation has the 

effect of optimizing the factor structure and its consequence is that the relative importance of the retained 

factors (components) is equalized. 

Test of normality was also conducted on the data and it was found that most variables are normally distributed as 

their significances are greater than 5% (see Appendix I).  
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3.0 RESULTS AND DISCUSSION  
Principal component analysis and factor analysis (using maximum likelihood factor extraction) display the same 

result for descriptive statistics as both analyses are performed by examining the patterns of correlations or 

covariation between the observed measures. 

 

Table 1: Eigenvalues and Communalities 

 

Variables PCA FA 

Comp1 Comp2 Comp3 h
2
 Factor1 Factor2 Factor3 h

2
 

X1 -0.121 0.909 0.194 0.878 -0.072 0.978 -0.193 0.999 

X2 -0.227 -0.836 0.340 0.865 -0.224 -0.821 -0.524 0.999 

X3 -0.135 -0.046 -0.841 0.727 -0.046 -0.096 0.686 0.482 

X4 -0.916 0.152 -0.161 0.889 -0.961 0.160 0.222 0.999 

X5 0.131 0.696 0.514 0.766 0.129 0.586 -0.166 0.387 

X6 0.827 0.026 -0.206 0.727 0.772 -0.033 0.385 0.745 

X7 0.286 -0.563 0.359 0.528 0.221 -0.435 -0.137 0.257 

X8 0.543 0.333 -0.420 0.586 0.526 0.229 0.210 0.373 

X9 -0.285 -0.057 0.656 0.515 -0.159 -0.037 -0.487 0.264 

X10 0.941 0.007 0.31 0.886 0.923 -0.017 0.055 0.856 

% of variance 0.3044 0.2458 0.1866 0.7368 0.2798 0.2253 0.1311 0.6362 

 

Table 1 shows PCA and FA analyses with Varimax rotation, Eigenvalue ≥ 1 and the resulting loadings for the 

percentage of non-food commodities in Nigeria for the year 2009/2010. Observe that the first column has 10 

variables as earlier defined, then the next three columns show the results for a PCA of the data, and the last three 

columns show corresponding results for an FA of the same data. Observe that the actual loadings differ for the 

PCA and FA. Note  also that the pattern of relatively strong loadings are the same for both analyses, so in that 

sense, it made little difference which analysis was used. However, loadings, higher communalities, and ultimately 

the proportion of variance accounted for in the aggregate is 73.68% in PCA as opposed to 63.62% in FA. This is 

because FA excludes unique variances which are used in the PCA to contribute to higher loadings with the 

components in ways that are not present in FA. 

Table 2: Total Variance Explained by Retained Components 

Component 

Initial Eigenvalues 

Extraction Sums of Squared 

Loadings Rotation Sums of Squared Loadings 

Total 

% of 

Variance 

Cumulative 

% Total 

% of 

Variance 

Cumulative 

% Total 

% of 

Variance 

Cumulative 

% 

1 3.044 30.444 30.444 3.044 30.444 30.444 2.969 29.689 29.689 

2 2.458 24.579 55.023 2.458 24.579 55.023 2.470 24.702 54.391 

3 1.866 18.656 73.679 1.866 18.656 73.679 1.929 19.288 73.679 

4 .753 7.526 81.204       

5 .637 6.372 87.576       

6 .545 5.450 93.025       

7 .336 3.357 96.382       

8 .250 2.500 98.882       

9 .111 1.112 99.994       

10 .001 .006 100.000       

Extraction Method: Principal Component Analysis. 
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Table 2 and Table 3 show the importance of the ten principal components (factors). Only the first three have 

eigenvalues over 1.00, and together these explain over 73% of the total variability in the data. While this figure 

remains the same after extraction using PCA, it differs by about 10% after rotation using FA (maximum 

likelihood) extraction. 

Appendix II and Appendix III shows the reproduced correlation of PCA and FA respectively. The reproduced 

correlations matrix differs from those in the observed matrix because they stem from the model. Therefore, to 

assess the fit of the model we can look at the differences between the observed correlations and the correlations 

based on the model. The difference can be calculated as follows: 

Residual = observed correlation – correlation from model. 

Note that this difference is the value quoted in the lower half of the reproduced matrix (labeled residuals). 

Therefore, the lower half of the reproduced matrix contains the differences between the observed correlation 

coefficients and the ones predicted from the model. For a good model these values will all be small. In fact, most 

values should be less than 0.05 significant levels (Field, 2004). Rather than scan this huge matrix, SPSS 16.0 

provides a footnote summary, which states how many residuals have absolute value greater than 0.05. For these 

data values there are 14 (31%) absolute values greater than 0.05 in FA and 23(51%) absolute values greater than 

0.05 in PCA. There are no hard and fast rules about what proportion of residuals should be below 0.05; however, 

if more than 50% are greater than 0.05 we probably have grounds for concern (Field, 2004). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3: Total Variance Explained by Retained Factors 

Factor 

Initial Eigenvalues 

Extraction Sums of Squared 

Loadings Rotation Sums of Squared Loadings 

Total 

% of 

Variance 

Cumulative 

% Total 

% of 

Variance 

Cumulative 

% Total 

% of 

Variance 

Cumulative 

% 

1 3.044 30.444 30.444 2.291 22.914 22.914 2.798 27.975 27.975 

2 2.458 24.579 55.023 2.722 27.216 50.130 2.253 22.534 50.509 

3 1.866 18.656 73.679 1.349 13.487 63.617 1.311 13.108 63.617 

4 .753 7.526 81.204       

5 .637 6.372 87.576       

6 .545 5.450 93.025       

7 .336 3.357 96.382       

8 .250 2.500 98.882       

9 .111 1.112 99.994       

10 .001 .006 100.000       

Extraction Method: Maximum Likelihood.       
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APPENDICES 

Appendix I: Tests of Normality 

 Kolmogorov-Smirnov
a
 Shapiro-Wilk 

Var. Statistic Df Sig. Statistic Df Sig. 

X1 .095 33 .200
*
 .977 33 .684 

X2 .116 33 .200
*
 .935 33 .049 

X3 .100 33 .200
*
 .957 33 .209 

X4 .145 33 .074 .945 33 .097 

X5 .170 33 .016 .953 33 .167 

X6 .100 33 .200
*
 .967 33 .406 

X7 .113 33 .200
*
 .940 33 .069 

X8 .165 33 .024 .754 33 .000 

X9 .119 33 .200
*
 .904 33 .007 

X10 .163 33 .026 .939 33 .065 

a. Lilliefors Significance Correction    

*. This is a lower bound of the true significance.   

There are a number of different extraction methods in factor analysis, unless there is a serious lack of multivariate 

normality, maximum likelihood extraction is the best among these method (DeCoster, 1998), hence the need to 

normality test. 

The Kolmogorov-Smirnov and Shapiro-Wilk tests compare the scores in the sample to a normally distributed set 

of scores with the same mean and standard deviation. If the test is non-significant (p > 0.05) it tells us that the 

distribution of the sample is not significantly different from a normal distribution (Field, 2004). 

The Appendix I includes the test statistic itself, the degrees of freedom and the significance value of the test. A 

significant value less than 0.05 indicate a deviation from normality. Both tests are highly non-significant, 

indicating that the distribution is normal. 
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Appendix II: Reproduced Correlations (PCA) 

 Var X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 

 

 

X1 .878
a
 -.666 -.189 .217 .717 -.117 -.477 .160 .110 -.101 

X2 -.666 .865
a
 -.217 .027 -.437 -.279 .528 -.549 .335 -.209 

X3 -.189 -.217 .727
a
 .252 -.482 .060 -.314 .264 -.511 -.153 

X4 .217 .027 .252 .889
a
 -.097 -.721 -.406 -.379 .147 -.866 

X5 .717 -.437 -.482 -.097 .766
a
 .020 -.171 .091 .261 .144 

X6 -.117 -.279 .060 -.721 .020 .727
a
 .148 .544 -.372 .772 

X7 -.477 .528 -.314 -.406 -.171 .148 .528
a
 -.186 .186 .277 

X8 .160 -.549 .264 -.379 .091 .544 -.186 .586
a
 -.449 .501 

X9 .110 .335 -.511 .147 .261 -.372 .186 -.449 .515
a
 -.248 

X10 -.101 -.209 -.153 -.866 .144 .772 .277 .501 -.248 .886
a
 

 X1  -.020 -.035 -.034 -.122 -.047 .061 -.014 -.041 .008 

X2 -.020  -.055 -.059 .013 -.068 -.149 .132 -.014 -.013 

X3 -.035 -.055  -.072 .104 -.042 .093 .008 .230 .010 

X4 -.034 -.059 -.072  .030 .059 .093 -.044 -.108 -.012 

X5 -.122 .013 .104 .030  -.018 .090 .024 -.051 -.041 

X6 -.047 -.068 -.042 .059 -.018  -.080 -.184 .040 -.067 

X7 .061 -.149 .093 .093 .090 -.080  .025 -.134 -.065 

X8 -.014 .132 .008 -.044 .024 -.184 .025  .114 -.066 

X9 -.041 -.014 .230 -.108 -.051 .040 -.134 .114  .013 

X10 .008 -.013 .010 -.012 -.041 -.067 -.065 -.066 .013  

Extraction Method: Principal Component Analysis. 

a. Reproduced communalities 

b. Residuals are computed between observed and reproduced correlations. There are 23 (51.0%) non redundant residuals 

with absolute values greater than 0.05. 
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Appendix IV: Correlation Coefficients 

     Correlation Matrix 

  X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 

Variables 

X1 1.000 -.668 -.181 .325 .579 -.336 -.371 .108 .074 -.247 

 X2 -.668 1.000 -.339 -.153 -.360 -.245 .326 -.449 .352 -.100 

 X3 -.181 -.339 1.000 .052 -.347 .147 -.245 .406 -.311 -.039 

 X4 .325 -.153 .052 1.000 .104 -.608 -.393 -.398 .043 -.872 

 X5 .579 -.360 -.347 .104 1.000 -.228 -.038 .074 .232 -.069 

 X6 -.336 -.245 .147 -.608 -.228 1.000 .163 .350 -.372 .661 

 X7 -.371 .326 -.245 -.393 -.038 .163 1.000 -.160 .055 .297 

 X8 .108 -.449 .406 -.398 .074 .350 -.160 1.000 -.343 .435 

 X9 .074 .352 -.311 .043 .232 -.372 .055 -.343 1.000 -.262 

 X10 -.247 -.100 -.039 -.872 -.069 .661 .297 .435 -.262 1.000 

 

The correlation coefficients show the relationship between the observed measures. The correlation matrix of 

principal components is the same to those of factor analytical techniques. It is from this matrix that reproduced 

correlations for both techniques are estimated (see Appendix II and Appendix III). 

 

4.0 CONCLUSION 
Factor Analytical techniques (FA) preserve correlations more than Principal Component Analysis (PCA) with a 

small residuals of 31% which show that there is a very little difference between the reproduced correlations and 

Appendix III: Reproduced Correlations (FA) 

 Var X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 

 X1 .999
a
 -.686 -.223 .183 .596 -.163 -.415 .146 .070 -.093 

X2 -.686 .999
a
 -.271 -.033 -.423 -.347 .380 -.416 .321 -.222 

X3 -.223 -.271 .482
a
 .181 -.176 .232 -.063 .098 -.323 -.003 

X4 .183 -.033 .181 .999
a
 -.067 -.662 -.313 -.422 .039 -.878 

X5 .596 -.423 -.176 -.067 .387
a
 .016 -.203 .167 .039 .100 

X6 -.163 -.347 .232 -.662 .016 .745
a
 .133 .479 -.309 .734 

X7 -.415 .380 -.063 -.313 -.203 .133 .257
a
 -.012 .047 .204 

X8 .146 -.416 .098 -.422 .167 .479 -.012 .373
a
 -.195 .493 

X9 .070 .321 -.323 .039 .039 -.309 .047 -.195 .264
a
 -.173 

X10 -.093 -.222 -.003 -.878 .100 .734 .204 .493 -.173 .856
a
 

 X1  -2.325E-6 .000 -2.538E-6 .000 .000 .000 6.052E-5 .000 .000 

X2 
-2.325E-6 

 
.000 -2.873E-6 .000 .000 .000 

-4.266E-

5 
.000 .000 

X3 .000 .000  -.001 -.201 -.213 -.159 .174 .043 -.140 

X4 -2.538E-6 -2.873E-6 -.001  .000 .000 -7.064E-5 .000 .000 -1.997E-5 

X5 .000 .000 -.201 .000  -.014 .123 -.053 .171 .002 

X6 .000 .000 -.213 .000 -.014  -.064 -.118 -.023 -.029 

X7 .000 .000 -.159 -7.064E-5 .123 -.064  -.148 .004 .007 

X8 6.052E-5 -4.266E-5 .174 .000 -.053 -.118 -.148  -.141 -.058 

X9 .000 .000 .043 .000 .171 -.023 .004 -.141  -.061 

X10 .000 .000 -.140 -1.997E-5 .002 -.029 .007 -.058 -.061  

Extraction Method: Maximum Likelihood. 

a. Reproduced communalities 

b. Residuals are computed between observed and reproduced correlations. There are 14 (31.0%) non redundant 

residuals with absolute values greater than 0.05. 
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the correlations actually observed between the variables against the residuals of PCA which stands at 51%. PCA 

preserve more variability of the original data set at 73.68% over FA which preserves variability of the original 

data set at 63.62%. 

While FA preserves more correlations than PCA, the later accounts for more variance in the observed variables 

than the former. Therefore, when it is needful to do a data reduction, PCA should be used; but when a statement 

about the underlying causal structure is desirable, FA should be used. 

This work has further deepened the discrepancies between PCA and FA, thereby providing assistance to 

researchers to ease their decision making as to which technique to use apriori. 
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