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A new feature definition for multi-channel EEG waveforms, which involves 
estimated second-order statistics, e.g. autocorrelation, of individual channel 
waveforms, is presented. Based on new features, a vector description with 
randomly chosen length and time lags as a multivariate process is employed 
to model human emotions. A regression classifier is designed and simulated 
to estimate a set of human emotion states based on the derived feature vector.  
Experiments with a real-world publicly available dataset indicate that the 
new feature and associated vector descriptions with chosen classifier lead to 
successful recognition of human emotion states. The simplicity and 
straightforward modeling of human emotions with use of new approach is 
expected to lead improved-performance human-computer interface systems 
in real-time in predictive manner.  
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Introduction   
  
A human-computer interaction (HCI) system is expected to be able to analyze, interpret and model human sensory 
signals and then associate them to motor behavior patterns as response, e.g. emotional states, successfully. Besides 
assessing mental and physical status of a (human) subject, building similar activity patterns given a set of emotional 
states has been an important functionality sought from an HCI system for suggesting well-posed behavior and 
action. It is therefore significant to realize a feasibly versatile interface and processing scheme with improved brain 
signal acquisition and mapping capability for recognition of emotions, [1]-[2]. Electroencephalogram (EEG) is 
possibly the simplest yet the most widely used technique to observe and collect electrical potential signals induced 
by cortical neurons under the skull for this purpose. It has been widely used for recognition/classification of human 
emotions, [3]. Due to excessively large number of cortical neurons involved in generating electrical signals against 
relatively small number of electrodes to collect and record in short duration, temporal samplings of EEG usually are 
of limited capability in recognition of involved event sources and relevant processes, [4]. Moreover, sources of most 
cortical activities in EEG signals are to a great extent obscured due to relatively high-amplitude artifacts. Hence, 
success in identifying emotional states based on EEG waveform components is, to a great extent, subject to method 
or algorithm used for extracting features to represent spatio-temporal characteristics, [5]. Feature extraction for EEG 
signals has drawn considerable attention and emphasis as a research topic in studies on brain-computer interface 
(BCI) or HCI systems in identifying sources of major neurophysiological events, [6].  

Various feature definitions and extraction methods have been proposed to represent supposedly distinct 
components involved in EEG waveforms: Joint time-frequency techniques and wavelet transforms (WT) have been 
known in obtaining relevant statistical summaries for spectral contents in a number of representative frequency 
bands given EEG signal observation window for representing spatio-temporal characteristics in terms of WT 
coefficients, which then can be used for classification, [7]. Autoregressive (AR) linear predictive coefficients (LPC), 
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and its variant cepstral coefficients for modeling non-stationary signals have also been widely adopted in EEG 
waveform classification, e.g. [8] and [9], respectively. Above parametric methods mostly suggest a time-varying 
linear relationship between electrophysiological excitatory cerebral current sources and the observed scalp potential 
with optimally suppressed artifact and noise components. They perform with relatively short-time window segments 
in which statistically invariant cues need to be extracted for temporally sparse, almost noise-like components. For 
example visually evoked-response potential (ERP) components, which are usually around 10µV low-frequency 
theta- and alpha-rhythmic beats, are generally observed within a time window of about 10s, [10]. In the case of 
intrusive phenomena, e.g. epileptic seizures, recurring alpha- and delta-rhythmic beats may transiently occur with 
interictal electrical discharge (IED), which makes it more involved to extract invariant features within observation 
time interval as such, [11]. In most cases, these phenomena become more complicated when other abnormalities or 
inferences are also recalled by varying brain regions, [12]. On the other hand, nonparametric methods, such as 
amplitude distribution, spike interval distribution, correlation analysis etc., offer versatility and flexibility for 
obtaining spatial representation of individual EEG waveforms, [13]. 

In this study, a new and simple, non-parametric feature extraction method for representing spatio-temporal 
behavior of EEG signals is presented and employed for evaluation human emotional states. New feature description 
is based on the intuition that a common predictive model can be attributed to by and be replaced with estimated 
ensemble of second-order statistics or autocorrelation terms. It suggests that it can be adapted straightforwardly to 
characterize multi-channel EEG waveforms. The resulting feature vectors are, then, used with a linear regression 
classifier to map multi-channel EEG waveforms to emotional states. The success of proposed scheme is tested and 
validated with a real dataset on the basis of the nearest-neighborhood between estimated and true emotional state 
vectors in statistical terms. The simulation results indicate that the new feature definition leads to recognition of 
subjects’ self-assessed emotions with success score between ≈ 80% - 85% in average. 

New Feature Description and Linear Regression Classifier 
 
Given a discrete-time signal vector x = [x1  x2 … xN] within an N-sample time slot, the sample value 𝑥! at time stamp 
n, can be predicted or modelled as output of an autoregressive filter driven by past samples as 

𝑥! = −  𝑎!𝑥!!!
!

!!!
= 𝑥! + 𝜀! (1) 

where p and 𝜀! are the prediction order and error, respectively. The prediction error 𝜀! is assumed to be a (normally 
distributed) white-noise random process. The model parameters in vector 𝒂 = [𝑎!  𝑎!   …   𝑎!] are called linear 
predictive coefficients (LPCs). They can be estimated based on least-squares by minimizing the prediction error 
power 𝐸! = 𝜀!!

!!!
!subject to 𝜕𝐸! 𝜕𝑎! = 0, where 𝑗 = 1, … , 𝑝, which yields Yule-Walker equations, [14]. The 

solution to Yule-Walker equations is usually obtained with recursive methods, e.g. Levinson-Durbin algorithm, in 
terms of estimated autocorrelation vector 𝒓 =  𝑟 0   𝑟 1 …   𝑟 𝑝  where  𝑟( 𝑚 − 𝑠 ) = !

!
𝑥!!!𝑥!!!!

!!! , 0 ≤ m, s 
≤ p. It is noticed that the vector 𝒓 is fully informative about 𝒂, that is, it suffices to have 𝒓 to uniquely determine the 
modelling vector 𝒂. Furthermore, from the solution of Yule-Walker equations, it is known that the farthest 
autocorrelation term  𝑟 𝑝  is a random quantity expressible in terms of smaller-lag autocorrelation terms, i.e. 
 𝑟 0 , … ,  𝑟 𝑝 − 1  once 𝒂 has been known. Thereby, we can suggest a feature to represent an L-channel EEG 
waveform as  

𝑣 𝑝 =
1
𝜎!!!

!!!
𝑟! 𝑝 − 𝜎!!

!

!!!
 (2) 

where 𝜎!! and  𝑟! 𝑝  are the variance and the p-lag autocorrelation of the EEG waveform in time slot for the l-th 
channel. Equation (2) implies a norm of vector whose contributions/coordinates are due to merely p-lag correlation 
terms against the variance for the signal considered. Recently, in [15], it has been demonstrated that above feature 
definition can be successfully applied in classifying normal and epileptic seizure components in EEG waveforms 
with a simple multivariate Gaussian classifier. 



ISSN 2320-5407                           International Journal of Advanced Research (2015), Volume 3, Issue 7, 1299-1303	
 

 
1301 

 
 

In order to show the use of new feature definition in a recognition task of emotional states for a multi-channel 
EEG waveform, we consider a feature vector 𝒗 = [𝑣 𝑝!,! …  𝑣(𝑝!,!)]! of 𝑣(𝑝!,!) with 𝑙 = 1,… , 𝑘, defined in (2) 
and a nonempty, distinct sub-vector 𝐩(!) = [𝑝!,!  …  𝑝!,!] of 𝐩 = [𝑝!  …  𝑝!] where 𝑝!,! ≠ 𝑝!,! for 𝑖 ≠ 𝑗. For a 
particular 𝐩(!), a suitable approach to estimate emotional state vector 𝒄 of length ℎ given 𝒗 is to use a linear 
regressivon estimator 𝒄 = 𝐀(𝒌)𝒗 + 𝒃(𝒌) + 𝒆(𝒌) where 𝐀(𝒌) is an h-by-k model matrix while 𝒃(𝒌) and 𝒆(𝒌) are the 
intercept and estimation error (column) vectors of length ℎ, respectively. With 𝑀!" training EEG waveform and 
respective emotional state vectors, by using the least-squares error with 𝑚𝑖𝑛 ( || 𝒄 − 𝐀 𝒌 𝒗 + 𝒃 𝒌

𝒆 !

!!"
!!! ||!), 𝐀 𝒌  

and 𝒃 𝒌 can be estimated as  

𝐀 ! = 𝐂𝐕!(𝐕𝐕!)!! 
 

𝒃(!) = 𝝁! − 𝐀(!)𝝁! 
 (3) 

where 𝐕/𝐂 is the matrix consisting of 𝑀!"  𝒗/𝒄 column vectors with estimated sample mean vector 𝝁!/!, [16]. 

The proposed feature vector description was evaluated in recognition of human emotions with use of DEAP 
dataset, [17], available at http://www.eecs.qmul.ac.uk/mmv/datasets/deap. This dataset consists of recorded 
physiological modalities from 32 healthy participants of 16 males and 16 females with varying ages between 19 and 
37. Recordings contain L = 32-channel EEG waveforms sampled at 512Hz and some other multi-peripheral 
physiological signals such as galvanic skin response, blood pressure, breathing and heart rate, skin temperature and 
facial electromyography signals. Each participant was recorded while watching 40 one-minute long high-light music 
videos. After watching each video, subjects were asked to assign numerical values to their emotional states 
corresponding to set S = {arouse, valence, dominance, liking, familiarity}, i.e. h = 5. The emotional assessment was 
made in a discrete scale 1 through 5 for familiarity and 1 to 9 for other emotions. It should be noted that each 
assessment vector is conditioned to mixture of emotion states considered above. Digitized EEG waveforms 
were down-sampled to 8 samples per second for reducing noisy artifacts and computation. Then, down-sampled 
waveform recordings were rearranged into split windows of N = 256 samples, i.e. each almost 32 seconds long. 
The vector p was set to be composed of lags from 0 to 7.5 seconds (60 samples) with increment of 1.5 seconds (12 
samples), i.e. d=6 and k=1, ..., 6. For each 𝐩(!), 10 distinct experiments were conducted. In each 
experiment, randomly chosen 40 EEG waveforms and corresponding self-assessment vectors were retained from the 
DEAP dataset. At the i-th experiment for each 𝐩(!), 𝑀!" = 10 of those 40 vectors were used to estimate model 
parameters 𝑨!

(!)and 𝒃!
(!) in training while testing the trained model was performed with remaining 𝑀!"!=30 vectors. 

Prior to processing, the state assignments other than the familiarity were scaled down to 5 and rounded for 
compatibility and discretization. For example, state values 7.45 and 8.15 were assigned to 4 and 5, respectively. In 
testing, for a test vector vj, 𝑗 =  1, … , 𝑀!"!, the nearest emotional state vector 𝒄 = 𝒄𝒔, which satisfies s(||𝒄 −
𝐀𝒊

𝒌 𝒗𝒋 + 𝒃𝒊
𝒌 ||𝟐) was found. This mapping was attributed to an indicator function I(k, i, j) such that I(k, i, j)=1 if s 

=j, otherwise 0. Then, a recognition success score for the regressive model classifier 
with 𝐀𝒊

𝒌  and 𝒃𝒊
𝒌  was defined as 

𝛾 𝑝 ! , 𝑖 =
1
𝑀!"!

𝐼(𝑘, 𝑖, 𝑗)
!!"!

!!!
 (4) 

In order to assess the estimation success of the regressive model with new feature vector definition for a given 
k, the average, 𝜇!(𝑘) of 𝛾 𝑝 ! , 𝑖  over i were evaluated and is depicted in Fig. 1(a) where the corresponding 
standard deviation, 𝜎γ(k) , is also included as error-bar. In forming these statistical quantities, since there are 

𝑑! =
𝑑
𝑘  k-tuples, their averages were taken, i.e. 𝜇! 𝑘 = (1/𝑑!) 𝜇! 𝑘!

!!
!!!  and 𝜎γ 𝑘 = (1/𝑑!) 𝜎γ 𝑘!

!!
!!! . 

A histogram was also obtained to visualise the distribution properties of 𝛾 as a density profile 𝑓(γ) over all 𝐩 ! , 𝑖  
terms as shown in Fig. 1(b).  
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          (a) 

 
          (b) 

Fig. 1.   Success in recognition of emotional states, 𝛾 for the linear regressive estimator with proposed feature vector 
definition: (a) variations of average, µγ, and standard deviation, σγ, with number of autocorrelation lags, k, (b) 

ensemble density histogram of  γ. 

From variation of statistical average, 𝜇!(𝑘), and standard deviation, 𝜎γ(𝑘), it is observed that the new feature 
vector definition with number of lags larger than 1 for a given multi-channel EEG waveform leads to estimation of 
the self-assessed emotions in success between almost 80% and 85% by using (linear) regression classifier. On the 
other hand, the histogram of overall experimental ensembles shows that classifier with regression estimator based on 
proposed feature vectors of randomly chosen length and autocorrelation lags for an EEG waveform yields estimation 
of the emotional states with success of average 𝜇! = 81.89% and standard deviation 𝜎γ = 2.56%.  

Conclusions 
 
A new feature definition for multi-channel EEG waveforms, which involves estimated second-order statistics, e.g. 
autocorrelation, of individual channel waveforms as a random process, is presented. With use of new feature 
definition, a vector description with randomly chosen length and time lags is given for modeling human emotions. A 
regression classifier is constructed for simulating human emotion states based on the derived feature vector.  
Experiments with a real-world publicly available dataset reveal that the new feature and associated vector 
descriptions with chosen classifier allow successful recognition of human emotion states studied. The simplicity and 
straightforward modeling of human emotions with use of new approach is expected to lead improved-performance 
human-computer interface systems in real-time in predictive manner. 
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