

Journal Homepage: -www.journalijar.com INTERNATIONAL JOURNAL OF ADVANCED RESEARCH (IJAR)

Article DOI:10.21474/IJAR01/1457
DOI URL: http://dx.doi.org/10.21474/IJAR01/1457

RESEARCH ARTICLE

CUBIC CONVERGENT MODIFIED NEWTON'S METHOD.

V.B. Kumar.Vatti ${ }^{1}$, Shouri Dominic ${ }^{1}$ and Sahanica. V^{2}

1. Department of Engineering Mathematics' Andhra University College of Engineering (A), Andhra University Visakhapatnam - 530003, Andhra Pradesh, India.
2. Associate Software Engineer, ROLTA India Ltd' Mumbai, India.

Manuscript Info

Manuscript History

Received: 12 July 2016
Final Accepted: 16 August 2016
Published: September 2016

Key words:-

Newton's formula; Nonlinear equations;
Iterative methods; Order of convergence;
Function evaluations.

Abstract

In this paper, we suggest an iterative method which is a modified version of Newton's method and it is shown that this method has a cubic rate of convergence.

Introduction:-

We seek the real solution of the equation

$$
\begin{equation*}
f(x)=0 \tag{1.1}
\end{equation*}
$$

Where $f(x)$ may be algebraic, transcendental or combination of both. All the iterative methods involve transforming the given equation $f(x)=0$ into the form $x=\phi(x)$ and generating a sequence of approximations defined by

$$
x_{n+1}=\phi\left(x_{n}\right)
$$

$$
(\mathrm{n}=0,1,2, \ldots .)
$$

starting with x_{0}. It is well known that this sequence converges, if

$$
\begin{equation*}
\left|\phi^{\prime}(x)\right|<1 \text { for all } \mathrm{x} \text { in } \mathrm{I} \tag{1.3}
\end{equation*}
$$

Where I be an interval containing the true solution and x_{0} is chosen in I.
A variant of Newton's method with accelerated third order convergence suggested by S. Weerakoon and T. G. I. Fernando[4] defined by

$$
\begin{equation*}
x_{n+1}=x_{n}-\frac{2 f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)+f^{\prime}\left(x_{n}^{*}\right)} \tag{1.4}
\end{equation*}
$$

$(\mathrm{n}=0,1,2 \ldots)$

$$
\text { Where } x_{n}^{*}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}
$$

which has a cubic convergence.
The method (1.4) approximates the indefinite integral of the derivative of the function involved in the Newton's method i.e.,

$$
\begin{equation*}
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)} \tag{1.5}
\end{equation*}
$$

($\mathrm{n}=0,1,2 \ldots$)
by trapezoid instead of a rectangle thus reducing the error in the approximation.
In section 2, we discuss the Modified Newton's method and where as in section 3, the rate of convergence of this method is obtained. Few numerical examples are considered in the concluding section.

Modified Newton's Method:-

Let x_{0} be the initial approximation which is in the vicinity of the real root ' α ' of the eqn. (1.1) and

$$
\begin{equation*}
x_{0}^{*}=x_{0}+h \tag{2.1}
\end{equation*}
$$

be the next approximation. Then, by finding the point of intersectionof the tangent with the x -axis at the point (x_{0}, y_{0}) as in the case of the Newton's method, one can have

$$
\begin{equation*}
x_{0}^{*}=x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)} \tag{2.2}
\end{equation*}
$$

If assuming ' h ' of (2.1) is small enough and higher powers of h are negligible, then $f\left(x_{0}^{*}\right)$ will almost be negligible. Now, we define

$$
\begin{equation*}
x_{1}=x_{0}^{*}-\frac{f\left(x_{0}^{*}\right)}{f^{\prime}\left(x_{0}\right)} \tag{2.3}
\end{equation*}
$$

In similar manner, the second approximate can be obtained as

$$
\begin{align*}
& x_{2}=x_{1}^{*}-\frac{f\left(x_{1}^{*}\right)}{f^{\prime}\left(x_{1}\right)} \tag{2.4}\\
& \text { Where } x_{1}^{*}=x_{1}-\frac{f\left(x_{1}\right)}{f^{\prime}\left(x_{1}\right)}
\end{align*}
$$

In general, the Modified Newton's method can be defined as

$$
\begin{aligned}
& \qquad x_{n+1}=x_{n}^{*}-\frac{f\left(x_{n}^{*}\right)}{f^{\prime}\left(x_{n}\right)} \\
& (\mathrm{n}=0,1,2 \ldots) \\
& \text { Where } x_{n}^{*}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}
\end{aligned}
$$

Algorithm 2.1: For a given x_{0}, compute the approximate solution x_{n+1} by iterative scheme.

$$
\begin{array}{r}
x_{n+1}=x_{n}^{*}-\frac{f\left(x_{n}^{*}\right)}{f^{\prime}\left(x_{n}\right)} \tag{2.6}\\
(\mathrm{n}=0,1,2 \ldots)
\end{array}
$$

Where x_{n}^{*} is as given in (2.5)
This algorithm is free from second derivative and requires two functional evaluations and one of its first derivatives.

Convergence Analysis:-

Theorem 3.1:

Let $\alpha \in D$ be a single zero of sufficiently differentiable function $f: D \subset R \rightarrow R$ for an open interval D . If x_{0} is in the vicinity of α, then algorithm 2.1 has third order convergence.

Proof: If ' α ' be the exact solution of the eqn. (1.1), then

$$
\begin{equation*}
f(\alpha)=0 \tag{3.1}
\end{equation*}
$$

Let e_{n+1} and e_{n} be the errors at $(n+1)^{\text {th }}$ and $n^{\text {th }}$ stages and let x_{n+1} and x_{n} be the $(n+1)^{\text {th }}$ and $n^{\text {th }}$ approximations to the root ' α ' of the eqn. (1.1). Therefore, we have

$$
\begin{align*}
& \quad x_{n+1}=e_{n+1}+\alpha \tag{3.2}\\
& x_{n}=e_{n}+\alpha \tag{3.3}
\end{align*}
$$

Now,

$$
\begin{align*}
\begin{aligned}
& f\left(x_{n}\right)= f\left(\alpha+e_{n}\right)= \\
& f(\alpha)+f^{\prime}(\alpha) e_{n}+\frac{f^{\prime \prime}(\alpha)}{2!} e_{n}^{2} \\
&+\frac{f^{\prime \prime \prime}(\alpha)}{3!} e_{n}^{3}+O\left(e_{n}^{4}\right) \\
&= f^{\prime}(\alpha)\left[e_{n}+\frac{1}{2!} \frac{f^{\prime \prime}(\alpha)}{f^{\prime}(\alpha)} e_{n}^{2}+\frac{1}{3!} \frac{f^{\prime \prime \prime}(\alpha)}{f^{\prime}(\alpha)} e_{n}^{3}+O\left(e_{n}^{4}\right)\right]
\end{aligned} \\
=f^{\prime}(\alpha)\left[e_{n}+c_{2} e_{n}^{2}+c_{3} e_{n}^{3}+O\left(e_{n}^{4}\right)\right]
\end{align*}
$$

Where $c_{j}=\frac{1}{j!} \frac{f^{j}(\alpha)}{f^{\prime}(\alpha)}$

$$
(\mathrm{j}=2,3,4 \ldots)
$$

$$
f^{\prime}\left(x_{n}\right)=f^{\prime}\left(\alpha+e_{n}\right)=f^{\prime}(\alpha)+f^{\prime \prime}(\alpha) e_{n}+\frac{f^{\prime \prime \prime}(\alpha)}{2!} e_{n}^{2}+O\left(e_{n}^{3}\right)
$$

$$
=f^{\prime}(\alpha)\left[1+\frac{f^{\prime \prime}(\alpha)}{f^{\prime}(\alpha)} e_{n}+\frac{1}{2!} \frac{f^{\prime \prime \prime}(\alpha)}{f^{\prime}(\alpha)} e_{n}^{2}+O\left(e_{n}^{3}\right)\right]
$$

$$
\begin{equation*}
=f^{\prime}(\alpha)\left[1+2 c_{2} e_{n}+3 c_{3} e_{n}^{2}+O\left(e_{n}^{3}\right)\right] \tag{3.5}
\end{equation*}
$$

Now again,

$$
\begin{align*}
& x_{n}^{*}= x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)} \\
&=\alpha+e_{n}-\frac{\left[e_{n}+c_{2} e_{n}^{2}+c_{3} e_{n}^{3}+O\left(e_{n}^{4}\right)\right]}{\left[1+2 c_{2} e_{n}+3 c_{3} e_{n}^{2}+O\left(e_{n}^{3}\right)\right]} \\
&=\alpha+e_{n}- {\left[e_{n}+c_{2} e_{n}^{2}+c_{3} e_{n}^{3}+O\left(e_{n}^{4}\right)\right] } \\
& \times\left[1+2 c_{2} e_{n}+3 c_{3} e_{n}^{2}+O\left(e_{n}^{3}\right)\right]^{-1} \\
&=\alpha+e_{n}-\left[e_{n}-c_{2} e_{n}^{2}+\left(2 c_{2}^{2}-2 c_{3}\right) e_{n}^{3}+O\left(e_{n}^{4}\right)\right] \\
&=\alpha+c_{2} e_{n}^{2}+\left(2 c_{3}-2 c_{2}^{2}\right) e_{n}^{3}+O\left(e_{n}^{4}\right) \tag{3.6}
\end{align*}
$$

and,

$$
\begin{align*}
f\left(x_{n}^{*}\right) & =f\left[\alpha+c_{2} e_{n}^{2}+\left(2 c_{3}-2 c_{2}^{2}\right) e_{n}^{3}+O\left(e_{n}^{4}\right)\right] \\
= & f(\alpha)+f^{\prime}(\alpha)\left[c_{2} e_{n}^{2}+\left(2 c_{3}-2 c_{2}^{2}\right) e_{n}^{3}+O\left(e_{n}^{4}\right)\right] \\
& =f^{\prime}(\alpha)\left[c_{2} e_{n}^{2}+\left(2 c_{3}-2 c_{2}^{2}\right) e_{n}^{3}+O\left(e_{n}^{4}\right)\right] \tag{3.7}
\end{align*}
$$

Adding (3.4) and (3.7), we get

$$
\begin{equation*}
f\left(x_{n}\right)+f\left(x_{n}^{*}\right)=f^{\prime}(\alpha)\left[e_{n}+2 c_{2} e_{n}^{2}+\left(3 c_{3}-2 c_{2}^{2}\right) e_{n}^{3}+O\left(e_{n}^{4}\right)\right] \tag{3.8}
\end{equation*}
$$

Dividing (3.8) by (3.5), we get

$$
\begin{align*}
\frac{f\left(x_{n}\right)+f\left(x_{n}^{*}\right)}{f^{\prime}\left(x_{n}\right)} & =\frac{\left[e_{n}+2 c_{2} e_{n}^{2}+\left(3 c_{3}-2 c_{2}^{2}\right) e_{n}^{3}+O\left(e_{n}^{4}\right)\right]}{\left[1+2 c_{2} e_{n}+3 c_{3} e_{n}^{2}+O\left(e_{n}^{3}\right)\right]} \\
= & {\left[e_{n}+2 c_{2} e_{n}^{2}+\left(3 c_{3}-2 c_{2}^{2}\right) e_{n}^{3}+O\left(e_{n}^{4}\right)\right] } \\
& \times\left[1+2 c_{2} e_{n}+3 c_{3} e_{n}^{2}+O\left(e_{n}^{3}\right)\right]^{-1} \\
= & {\left[e_{n}+2 c_{2} e_{n}^{2}+\left(3 c_{3}-2 c_{2}^{2}\right) e_{n}^{3}+O\left(e_{n}^{4}\right)\right] } \\
& \times\left[1-2 c_{2} e_{n}+\left(4 c_{2}^{2}-3 c_{3}\right) e_{n}^{2}+O\left(e_{n}^{3}\right)\right] \\
= & e_{n}+\left(2 c_{2}-2 c_{2}\right) e_{n}^{2}+\left(4 c_{2}^{2}-3 c_{3}-4 c_{2}^{2}\right. \\
& \left.+3 c_{3}-2 c_{2}^{2}\right) e_{n}^{3}+O\left(e_{n}^{4}\right) \\
& =e_{n}-2 c_{2}^{2} e_{n}^{3}+O\left(e_{n}^{4}\right) \tag{3.9}
\end{align*}
$$

From (2.5)

$$
\begin{aligned}
x_{n+1} & =x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}-\frac{f\left(x_{n}^{*}\right)}{f^{\prime}\left(x_{n}\right)} \\
& =x_{n}-\frac{f\left(x_{n}\right)+f\left(x_{n}^{*}\right)}{f^{\prime}\left(x_{n}\right)}
\end{aligned}
$$

$$
x_{n+1}=x_{n}^{*}-\frac{f\left(x_{n}^{*}\right)}{f^{\prime}\left(x_{n}\right)}
$$

\therefore from (3.2), (3.3) and (3.9), we have

$$
\begin{aligned}
\alpha+e_{n+1} & =\alpha+e_{n}-e_{n}+2 c_{2}^{2} e_{n}^{3}+O\left(e_{n}^{4}\right) \\
\Rightarrow e_{n+1} & \propto O\left(e_{n}^{3}\right)
\end{aligned}
$$

Hence, the method (2.5) has a third order convergence.

Numerical Examples:-

We consider few numerical examples considered by S. Weerakoon and T. G. I. Fernando [4] and by B.S. Grewal [5] and the method (2.5) is compared with the methods (1.4) and (1.5). The computational results are tabulated below and the results are correct up to an error less than 0.5×10^{-7}.

Table 4.1:-

Function	x_{0}	i			NOFE			Root
$f(x)$		NM (1.5)	VNM (1.4)	MN (2.5)	NM (1.5)	VNM (1.4)	MN (2.5)	
$(1) x^{3}+4 x^{2}-10$	2.5	6	4	4	12	12	12	1.36523001
	3	6	3	3	12	9	9	
$(2) \sin ^{2}(x)-x^{2}+1$	3.5	6	4	4	12	12	12	1.404492
$(3) x^{2}-e^{x}-3 x+2$	-3.5	6	5	5	16	15	15	
(4) $\cos (x)-x$	3.6	6	4	4	12	12	12	0.25753028
(5) $(x-1)^{3}-1$	3.5	6	12	4	12	12	12	12
	-1.9	9	9	4	12	36	12	0.7390851
(6) $x^{3}-10$	6	4	6	26	27	15		
(7) $2 x-\log _{10} x-7$	3.5	6	4	4	12	58	18	
(8) $x e^{x}-\cos x$	1.2	6	4	4	12	12	2	
(9) $2 x-\log x-6$	3.6	3	2	2	6	6	12	0.5177564
(10) $4 e^{-x} \sin x-1$	2	5	4	3	10	12	9	1.364958

NM- Newton's Method
VNM - Variant of Newton's Method
NOFE - Number of Function Evaluations MN - Modified Newton's Method
i-Number of iterations to approximate the root to 7 decimal places

Conclusion:-

It is evident from the above computational results that the method (2.5) has a third order convergence and requires lesser or the same number of total functional evaluations compared to the method (1.5) \& (1.4) and doesn't need tocompute $f^{\prime}\left(x_{n}^{*}\right)$ at each step as in the case of the method (1.4).

References:-

1. J. E. Dennis and R.B. Schmable Numerical Methods for Unconstrained Optimisation and Non-linearEquations, Prentice Hall, (1983).
2. B.L. Burden and D.J. Faires, Numerical Analysis, PWS, Kent Publishing, Boston. (1983).
3. T.G.I Fernando and S. Weerakoon. Improved Newton's Method for finding roots of an Non-linear equation,proceeding of the $53^{\text {rd }}$ Annual Sessions of Sri Lanka Association for the Advancement of Science (SLAAS)E1-22, (1997) 309.
4. T.G.I Fernando and S. Weerakoon, A Variant of Newton's Method with Accelerated Third-OrderConvergence, Appli. Math. Lett. 13 (2000) 87-93.
5. Higher Engineering Mathematics $42^{\text {nd }}$ Edition by Dr. B.S. Grewal, published by Khanna Publishers.
