ISSN: 2320-5407

International Journal of Advanced Research

Publisher's Name: Jana Publication and Research LLP

www.journalijar.com

REVIEWER'S REPORT

Manuscript No.: 50492 Date: 03-03-2025

Title: Advance DSP - Geortzel Algorithm Implementation

Recommendation:	Kating	Excel.	Good	Fair	Poor
Accept YES	Originality		YES		
Accept after revision	Techn. Quality		YES		
Do not accept (Reasons below)	Clarity			YES	
	Significance		YES		_

Reviewer Name: Gulnawaz Gani

Reviewer's Comment for Publication

This paper contributes an **optimized Goertzel algorithm implementation** for **efficient frequency detection in DSP applications**, particularly **DTMF decoding in telecommunication systems**.

Detailed Reviewer's Report

- The paper "Advance DSP Goertzel Algorithm Implementation" explores the Goertzel algorithm, a computationally efficient method for detecting specific frequencies in a signal.
- It highlights the algorithm's two-phase approach: **processing** (**filtering target frequencies**) and **evaluation** (**magnitude computation**).
- Compared to the **Fast Fourier Transform** (**FFT**), Goertzel is **more efficient** when analyzing a small set of frequencies, making it ideal for **real-time DSP applications** with limited resources. The study focuses on **DTMF tone decoding**, demonstrating its effectiveness in **telecommunication systems**.
- It includes an **implementation in C**, optimization using **compiler switches and intrinsics**, and performance analysis to reduce computational cycles.
- The results confirm that the optimized algorithm improves efficiency while maintaining accuracy. The research underscores Goertzel's **practicality in embedded systems** and **frequency detection tasks** but suggests further improvements for **multi-frequency analysis**.

Decision:

Accept