

Advance DSP – Geortzel Algorithm Implementation 1

 2

Abstract— The Goertzel algorithm is one of the turns in 3
digital signal processing that efficiently detects specific 4
frequency components of a signal. In contrast to methods such 5
as the Fast Fourier Transform, which examines all the 6
frequencies, the Goertzel algorithm is applied to the selection of 7
single frequencies or a few of them for analysis; hence, in 8
situations where resources are limited, this method becomes 9
very useful. This abstract considers the operational principles 10
of the algorithm, which basically contains two major phases: 11
processing and evaluation. During the processing phase, the 12
algorithm works as a kind of digital filter, ringing on the target 13
frequency; at the same time, the evaluation phase calculates the 14
magnitude of this frequency component. Because of 15
computational efficiency and simplicity, the Goertzel algorithm 16
is applied perfectly in real-time systems, especially in systems 17
with limited processing power. An especially notable 18
application of the Goertzel algorithm in Dual-Tone Multi-19
Frequency decoding is that it will precisely detect the pairs of 20
frequencies a telephone keypad generates and enables 21
applications such as automated call routing. This abstract 22
evidence the relevance and applicability of the Goertzel 23
algorithm in DSP, with specific applications where the 24
detection of certain, pre-defined targeted frequencies has to be 25
made with very minimal computational overhead. 26

Keywords—Goertzel Algorithm, Digital Signal Processing 27
(DSP), Frequency Analysis, Discrete Fourier Transform (DFT), 28
Infinite Impulse Response (IIR) Filter, Real-Time Signal 29
Processing, DTMF Decoding, Frequency Detection, Single 30
Frequency Bin, Tone Detection, Embedded Systems, Signal 31
Processing Algorithms, Targeted Frequency Analysis 32

I. INTRODUCTION 33

The Goertzel algorithm is, therefore, a very core technique in 34
the realm of digital signal processing, essentially related to the 35
analysis and detection of some frequency components of a signal. 36
Indeed, DSP is the backbone of modern technology in that it 37
enables the manipulation and interpretation of digital signals in 38
very diversified applications, be they in telecommunications, audio 39
processing, or medical imaging. One of the cardinal problems in 40
DSP is how, efficiently, to detect certain frequencies within a 41
signal, especially when real-time performance is required and 42
computational resources are limited. In the late 1950s, Gerald 43
Goertzel suggested an algorithm that provided a computationally 44
efficient solution for the isolation and examination of specific 45
frequencies in a digital signal. 46

Much of the DSP application is centred on frequency analysis 47
because the important information may be encoded in the 48
frequency content of the signals. In telecommunication 49
applications, for example, various channels or streams of data can 50
be modulated on various frequencies, while in audio processing, 51
frequency analysis of a signal may become very vital in noise 52
reduction or equalization. Traditional frequency analysis tools, such 53
as the Fast Fourier Transform, are incredibly powerful means of 54
gaining an overview of the frequency spectrum of a signal. 55
However, they are sometimes rather computationally expensive 56
when only a very few frequencies need to be known. That is where 57
the Goertzel algorithm excels. The Goertzel algorithm is of 58
immense use where computational efficiency is a big factor, since it 59
is optimized for individual frequency or small sets of frequencies 60
detection. In contrast to the 61

62

FFT, the computation of the whole spectrum is done with some 63
redundancy. 64

The Goertzel algorithm comprises two major phases: the 65
processing phase and the evaluation phase. In the processing 66
phase, it applies a difference equation to the input signal, much 67
like a digital filter. This filter, however, is designed with 68
coefficients that make it resonate at a target frequency, effectively 69
amplifying the frequency component of interest while attenuating 70
others. The difference equation used in this phase is such that it 71
accumulates energy at the target frequency over time; the final 72
value reflects the magnitude of the frequency component in 73
question within the signal. 74

The evaluation phase of the Goertzel algorithm is the second 75
stage, in which the algorithm uses the final states of the filter to 76
compute the magnitude of the target frequency component. This 77
involves final states of the filter derived for magnitude and 78
effectively quantifying the strength of the target frequency within 79
the signal to allow for precise detection and analysis. 80

One of the major advantages of the Goertzel algorithm is its 81
efficiency. The algorithm performs a constant number of 82
operations for each frequency to be estimated; hence, in cases 83
where only a small set of frequencies is under analysis, it is much 84
more efficient than the FFT. This makes the Goertzel Algorithm 85
very useful in real-time applications and on systems with limited 86
processing power or low memory, such as embedded systems. This 87
algorithm is simple, and its simplicity makes it possible to be 88
implemented on very basic hardware platforms; this ranges from 89
microcontrollers to even digital signal processors. 90

An extremely practical application of the Goertzel algorithm is 91
in Dual-Tone Multi-Frequency decoding. In fact, when any key on 92
a dual-tone phone keypad is pressed, it essentially generates two 93
different frequencies: one from the low-frequency bank and one 94
from the high-frequency bank. Since the Goertzel algorithm is 95
excellent at detecting such frequencies, it can easily detect which 96
key has been pressed. This capability is very critical in 97
telecommunication systems, including in applications such as 98
automated call routing and IVR systems. The robustness and 99
accuracy of the algorithm also make it quite effective in noisy 100
environments, further greatly enhancing its utility in real-world 101
applications. 102

Put simply, the Goertzel algorithm is an important tool in the 103
area of digital signal processing, providing a very focused and 104
efficient approach to analysing frequencies. It is an irreplaceable 105
technique for applications as far apart as telecommunications and 106
audio processing, due to the capability of this algorithm to isolate 107
and analyse specific frequencies with minimum computational 108
overhead in doing so. Understanding and implementing the 109
Goertzel algorithm not only enhances the capacity of performing a 110
selective frequency detection but also deepens the broader 111
understanding of DSP concepts and their practical application in 112
the different technological domains. 113

II. EQUATIONS 114

A. Difference Equation 115

The Goertzel algorithm is based on a difference equation at the 116
core, which virtually equals to a digital resonator, for frequency 117
detection. The basic difference equation is: 118

s[n]=x[n]+2cos(ω)⋅s[n−1]−s[n−2] 119

In this equation, s[n] represents the current output of the filter at 120
sample n, while x[n] is the input sample at the same point. The 121
terms122

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

s[n−1] and s[n−2] are the outputs of the filter from the previous two
samples. The term ω denotes the normalized angular frequency of
the target frequency, defined as 𝜔=2𝜋𝑓/fs , where 𝑓 is the
frequency of interest and fs is the sampling rate. By iterating this
difference equation across all input samples, the algorithm
effectively isolates the energy associated with the target frequency,
enabling precise detection within the signal.

B. Final State Calculation

Once all samples have been processed through the difference
equation, the Goertzel algorithm calculates the final states to

determine the frequency component‟s real and imaginary parts. The

real part is computed using:
𝑆𝑟 = s[N−1] − cos(ω) * s[N−2]

Here, s[N−1] and s[N−2] are the final outputs of the filter,

representing the most recent samples. The term cos(ω) adjusts for

the phase of the target frequency. The imaginary part is given by:

𝑆𝑖 = sin(ω) ⋅ s[N−2]
where sin(ω) accounts for the phase shift in the orthogonal

direction. These components, 𝑆r and 𝑆𝑖, are then used to compute

the magnitude of the target frequency:

∣X(f)∣=√𝑠2 + 𝑆2

This magnitude provides a measure of the strength of the frequency

f within the signal, allowing for accurate frequency detection.

C. Alternate Difference Equation

An alternate formulation of the Goertzel algorithm utilizes a

variant of the difference equation:
𝑄𝑛 =x[n]+2cos (2πk/N) * Q (n−1) − Q (n−2)

In this version, 𝑄𝑛 is the output of the filter at sample 𝑛 and 2𝜋𝑘/N
represents the normalized angular frequency for discrete frequency

bins. Here, 𝑘 is the bin index corresponding to the frequency of

interest, and 𝑁 is the total number of samples in the analysis

window. This formulation provides an alternative method for
computing the frequency response, often used in discrete Fourier

transform applications and signal analysis.

D. Magnitude Calculation with Alternate Form

Using the alternate difference equation, the squared magnitude
of the frequency component k can be computed as:

|yk(N)| = Q2(n) + Q2(n-1) – 2cos(2πk/N) Qn * Qn-1
In this equation, 𝑄n and 𝑄n-1 are the filter outputs at the final

points in the analysis window. The term 2cos(2𝜋𝑘/N) reflects the

cosine coefficient associated with the frequency bin index 𝑘. This

expression combines the squared outputs and cross-terms to

determine the magnitude squared of the frequency component,
offering an efficient way to compute frequency content.

E. Simplified Final State Calculation

A simplified form of the squared magnitude calculation is
given

III. TASKS

This will entail the study and implementation in C of the
Goertzel algorithm for single frequency detection. This forms the
basis of this project: understanding the basic working of the
algorithm and translating it into a C program. The Goertzel
algorithm will be efficient for the identification of specific
frequencies in a signal. In applications like DTMF tone detection,
this might turn out to be very useful. It will show how this
algorithm filters out and processes a desired frequency, which
becomes a stepping-stone toward more advanced frequency
detection tasks.

The second task is an expansion in that it requires completing
a project able to detect all the 15 DTMF digits. This involves the
following steps: Copy the provided data bin file into the CCS
project environment. You will need to work through the first three
TODO sections of the code files provided to apply the Goertzel
algorithm to decode the tone data from the file. Finally, you should
fill in the last TODO section of util file so that this program
outputs an audio file that contains the decoded tone and is similar
to the reference data_audio.wav. The third assignment is to
optimize the performance of the Goertzel algorithm. Concretely, it
means that you have to modify the C code to use intrinsics and
compiler optimizations and then measure computational cycles
with and without these improvements. It is expected that this
optimization would improve the efficiency of the algorithm so
that, even with the additional complexity in it to detect multiple
frequencies, it would perform well.

A. Task 1

The Goertzel algorithm, which is frequently used in
applications like DTMF decoding in telecommunication systems,

is an effective computational technique for identifying frequency

components in a digital signal.
This task describes the application of this technique to identify,

from provided data, a single pre-defined frequency.

The below figure represents the snippet of code written for

accomplishing the task.

by:
|Yk(N)|2 = Q2(n) + Q2(n-1) – Coeff * Qn * Qn-1

where Coeff is the coefficient calculated as 2cos(2πk/N). This
formula simplifies the magnitude calculation by incorporating the

cosine term directly into the equation. The term Coeff adjusts for

the phase shift of the target frequency, and the resulting magnitude

squared reflects the strength of the frequency component in the
signal.

F. Summary

These combined equations enable the Goertzel algorithm to be

very effective in detecting frequencies within a digital signal. The

difference equation serves to isolate a frequency of interest, while
the final state calculations and magnitude equations follow through

on the measurements and quantification of that frequency's

presence. This set of alternate formulations with simplified

calculations is useful for flexibility and efficiency in many signal
processing situations.

Fig. 1. Code Snippet for detecting one frequency

The implementation of the code is explained as follows :

w calculates the angular frequency in radians per sample, which is

used to detect the target frequency freq. coef_1 is calculated using

the cosine of w, which is part of the Goertzel algorithm's recursive
formula. prod1 and prod2 are intermediate variables used in the

recursive formula. delay, delay_1, and delay_2 are part of a

recursive filter setup to compute the necessary terms over time.

This sequence of assignments updates the delays which simulate
the filter's memory.

The block inside the if statement executes once all the samples
(NO_OF_SAMPLES) have been processed. It calculates the final

Goertzel value, which represents the magnitude of the target

frequency component within the signal. prod1, prod2, and prod3

compute the terms required to calculate the magnitude of the
detected frequency using the Goertzel-specific algorithm. Goertzel

value is computed using the square root of the sum and differences

of these products, which yields the magnitude of the frequency

component at freq. The delays and sample counter N are reset for
the next batch of processing.

In this task, a sample with single tone at 697 Hz is generated and

then detected.

Fig 2 shows the magnitude of the frequency 697 Hz.

Fig. 2. Goertzel value for 697 Hz

In order to make sure that the code works properly it was run to

detect other requencies. Fig 3 shows the magnitude for the

frequency 941 Hz.

Fig. 3. Goertzel values for 941 Hz

It can be observed that the magnitude for 697 Hz is more than 941

Hz, which confirms the reliability of the code.

B. Task 2

This task explains the implementation of the Goertzel algorithm

to detect Dual-tone multi-frequency (DTMF) signals. The

algorithm decodes the provided 8-digit tone from a binary data file

and generates an equivalent audio file.

a) This part consists of reading the data from the given binary

file, as shown in the below code snippet of Fig 4.

Fig. 4. Code Snippet for reading binary data

The file data.bin is opened in read-binary mode. If the file doesn't

exist or can't be opened, an error message is printed, and the
program exits with an error code. The program reads

NO_OF_SAMPLES of 2-byte elements from the file into the data

array. Hence the data read is of the format „signed int16‟. Memory

is allocated dynamically for buffer. The size allocated here is
sufficient to hold a large number of samples i.e., 160,000 short

integers.

b) This part implements the feedback and feedforward loop of

the Goertzel algorithm to detect all the eight frequencies

and based on the Goertzel value, the key pressed is found

out.

TODO 1 implements the feedback loop of the Goertzel algorithm,

shown in the Fig 5.

Fig. 5. Code for TODO 1

s_prev and s_prev2 are arrays that store state values for each of
the 8 frequencies being monitored. For each of the 8 frequencies,

the code calculates the normalized frequency omega, its cosine,

and the Goertzel coefficient. Using the Goertzel algorithm
formula, the code updates the state variables based on the current

input and the previous states. This loop effectively filters the input

signal and prepares the state variables for detecting the presence of

specific frequencies associated with DTMF tones.

TODO 2 completes the feedforward loop of the Goertzel

algorithm, shown in the Fig 6.

Fig. 6. Code for TODO 2

The algorithm runs the feedforward loop after processing a specific

number of samples (206 in this case). For each of the 8 frequencies,

the state variables are processed to get the final magnitude. The

magnitudes are stored in the gtz_out array.

TODO 3 provides implementation of the Goertzel algorithm for

detecting DTMF (Dual-tone multi-frequency) tones on the Goertzel

values output, shown in the Fig 7.

Fig. 7. Code for TODO 3

The code loops through the first four frequencies to find the row

frequency with the highest magnitude and then through the next
four frequencies to find the highest column frequency. The detected

row and column indices help to look up the corresponding digit and

store it in the result array. For each sample the detection loops goes

and the corresponding result array gets populated.

c) This part implements the code to generate DTMF tones

based on the keys detected, and finally generating an audio

file.
The implementation part is shown in the Fig 8.

Fig. 8. Code for generating audio file

The algorithm starts with determining the number of keys and

allocating memory for the total samples required for the DTMF
sequence. Here there were in total 8 keys. For each key the

duration of the tone specified was 0.5 seconds. Hence with a

sampling rate of

8 KHz, each key requires 4000 samples. The function
generateDTMFTone loops through the keys detected to generate

the DTMF tone and store it in the appropriate position in the

samples array. Post generation, the samples are written to the

audio file.

Fig 9 shows the detected keys present in the given binary data file.
And the corresponding audio file is generated too.

Fig. 9. Result for task 2

● Use either SI (MKS) or CGS as primary units. (SI
units are encouraged.) English units may be used as
secondary units (in parentheses). An exception
would be the use of English units as identifiers in
trade, such as “3.5-inch disk drive”.

C. Task 3

This task quantifies the performance of the Goertzel algorithm

by counting the number of clock cycles required to loop through
the algorithm. The cycles for feedback and feedforward loops are

tallied separately.

Fig 5 and Fig 6 shows the code for calculating the time elapsed

through feedback and feedforward loops respectively.

Fig 9 shows the number of cycles took for feedback and

feedforward loops before optimization which are 3996 and 1603

respectively.

The cycle count of the Goertzel algorithm can be reduced using

compiler switches and intrinsics.

Compiler switches are commands or settings that are used during
the compilation process to modify the behaviour and processing of

the compiler. They are often referred to as compiler options or

compiler flags. The optimization level, the kinds of warnings that

are generated, the debug information that is included in the output,

and many other elements of the compilation process may all be

impacted by these settings.

Intrinsics are a kind of function that many compilers offer that let
programmers access processor-specific instructions straight out of

the box without requiring them to create assembly code. By

allowing software to leverage the sophisticated features of

contemporary processors straight from code, intrinsics fill the gap
between high- level languages and low-level assembly.

Fig. 10. Values before optimizing

Fig. 11. Values optimizing to

The optimizations used here are Optimization Level (--opt level, -

O) and Optimize for code size (--opt_for_space,-ms). „-O’

controls the general optimization level applied by the compiler

when generating code. Here level 3 is employed. This level
improves the performance of the resulting executable code at the

cost of longer compile time. It enables more aggressive

optimizations which includes loop unrolling, inlining of functions,

and vectorization. „- ms’ directs the compiler to reduce the size of
the generated code, which is particularly useful for memory-

constrained environments. Here level 3 is used. At this level, the

compiler aggressively changes the way code is generated to

minimize the footprint, which includes omitting inline expansions,
using smaller libraries and techniques that reduce size at the cost of

execution speed.

Fig 10 shows the number of cycles obtained after optimization

which are 3600 and 1148 respectively.

Fig. 12. Number of cycles after optimization

The optimization of the Goertzel algorithm through compiler flags

and intrinsics decently enhanced its execution efficiency. These

results highlight the importance of targeted optimizations in the
development of high-performance DSP applications.

IV. CONCLUSION

This report shall therefore extensively cover all aspects
of the implementation and optimization of the Goertzel algorithm

in C for frequency detection tasks. The first task involves studying,

then implementing, the Goertzel algorithm to detect a single

frequency that has been successful in showing foundational steps
needed for isolating and analyzing certain frequency components

in a digital signal. This implementation was checked with the use

of code snippets and frequency magnitude visualizations, which

proved the accuracy and reliability of the algorithm. In turn, this
created the basis for more complex tasks of multiple frequency

detection.

In second task was the extension of the Goertzel algorithm to
detect all 15 DTMF digits used in telecommunication systems. It

read and decoded an 8-digit tone from a binary data file, generated

a corresponding audio file that would compare with a reference
audio, showed in detail the code snippets of the feedback and

feedforward loops of the algorithm, and managed to correctly

decode the tones. Finally, optimization of the Goertzel Algorithm

is explained toward the end of the report, where performance was
improved by activating compiler switches and intrinsics. It

measured the cycle count before and after optimization. The report

presented an effective decrease in processing time and pointed out

the necessity of such optimizations in digital signal processing
applications. All tasks performed accurately, hence ensuring that

the Goertzel algorithm is effective for both single and multi-

frequency detection cases.

References

[1] N. Dahnoun, Digital Signal Processing Implementation: Using
the TMS320C6000 DSP Platform, Prentice Hall, 2000.

[2] N. Dahnoun, "Multicore DSP: From Algorithms to Real-time
Implementation on the TMS320C66x SoC," 2018.

[3] https://www.ti.com/lit/an/spra066/spra066.pdf
[4] C. Marven, “General-Purpose Tone Decoding and DTMF

Detection,” in Theory, Algorithms, and Implementations,
Digital Signal Processing Applications with the TMS320
Family, Vol. 2, literature number SPRA016, Texas
Instruments (1990).

[5] Goertzel, G. (1958). An Algorithm for the Evaluation of Finite
Trigonometric Series. The American Mathematical Monthly,
65(1), 34-35. doi:10.2307/2310071.

[6] Oppenheim, A. V., Schafer, R. W., & Buck, J. R. (1999).
Discrete-Time Signal Processing (2nd ed.). Prentice Hall.

[7] Frerking, M. E. (1994). Digital Signal Processing in
Communication Systems. Springer.

[8] Proakis, J. G., & Manolakis, D. G. (2007). Digital Signal
Processing: Principles, Algorithms, and Applications (4th
ed.). Prentice Hall.

[9] Schafer, R. W., & Rabiner, L. R. (1975). A Digital Signal
Processing Approach to Interpolation. IEEE Transactions on
Acoustics, Speech, and Signal Processing, 23(3), 222-234.

[10] Jiang, Y., Zhang, Z., & Zhang, Z. (2009). Efficient DTMF
Decoding Algorithm Based on Improved Goertzel Algorithm.
In 2009 International Conference on Multimedia Information
Networking and Security (pp. 464-468). IEEE.
doi:10.1109/MINES.2009.236.

[11] Kuo, S. M., & Lee, B. H. (2001). Real-Time Digital Signal
Processing: Implementations and Applications (2nd ed.). John
Wiley & Sons.

[12] Gomes, G. R., Silva, A. L., & Petraglia, A. (2004). Goertzel
Algorithm in the Architecture of DTMF Decoders. In
Proceedings of the IEEE

[13] Medawar, P. B. (1981). The Limits of Optimization in Digital
Signal Processing. IEEE Transactions on Acoustics, Speech,
and Signal Processing, 29(5), 1147-1156.

[14] Martin, K. (1989). Digital Filters for DTMF Decoding. IEEE
Transactions on Communications, 27(3), 399-411.

[15] Lathi, B. P., & Ding, Z. (2009). Modern Digital and Analog
Communication Systems (4th ed.). Oxford University Press.

[16] Chen, C. T. (1984). Digital Signal Processing: Spectral
Computation and Filter Design. Oxford University Press.

[17] Farina, A., & Ayalon, A. (2003). Efficient DTMF Decoding
with Optimized Goertzel Filters. In 2003 IEEE 14th
Workshop on Signal Processing Advances in Wireless
Communications (pp. 469-473). IEEE.
doi:10.1109/SPAWC.2003.1314548.

[18] Therrien, C. W. (1992). Discrete Random Signals and
Statistical Signal Processing. Prentice Hall.

[19] Lyons, R. G. (2010). Understanding Digital Signal Processing
(3rd ed.). Pearson Education.

https://www.ti.com/lit/an/spra066/spra066.pdf

