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Abstract— The Goertzel algorithm is one of the turns in 3 
digital signal processing that efficiently detects specific 4 
frequency components of a signal. In contrast to methods such 5 
as the Fast Fourier Transform, which examines all the 6 
frequencies, the Goertzel algorithm is applied to the selection of 7 
single frequencies or a few of them for analysis; hence, in 8 
situations where resources are limited, this method becomes 9 
very useful. This abstract considers the operational principles 10 
of the algorithm, which basically contains two major phases: 11 
processing and evaluation. During the processing phase, the 12 
algorithm works as a kind of digital filter, ringing on the target 13 
frequency; at the same time, the evaluation phase calculates the 14 
magnitude of this frequency component. Because of 15 
computational efficiency and simplicity, the Goertzel algorithm 16 
is applied perfectly in real-time systems, especially in systems 17 
with limited processing power. An especially notable 18 
application of the Goertzel algorithm in Dual-Tone Multi-19 
Frequency decoding is that it will precisely detect the pairs of 20 
frequencies a telephone keypad generates and enables 21 
applications such as automated call routing. This abstract 22 
evidence the relevance and applicability of the Goertzel 23 
algorithm in DSP, with specific applications where the 24 
detection of certain, pre-defined targeted frequencies has to be 25 
made with very minimal computational overhead. 26 
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I. INTRODUCTION 33 

The Goertzel algorithm is, therefore, a very core technique in 34 
the realm of digital signal processing, essentially related to the 35 
analysis and detection of some frequency components of a signal. 36 
Indeed, DSP is the backbone of modern technology in that it 37 
enables the manipulation and interpretation of digital signals in 38 
very diversified applications, be they in telecommunications, audio 39 
processing, or medical imaging. One of the cardinal problems in 40 
DSP is how, efficiently, to detect certain frequencies within a 41 
signal, especially when real-time performance is required and 42 
computational resources are limited. In the late 1950s, Gerald 43 
Goertzel suggested an algorithm that provided a computationally 44 
efficient solution for the isolation and examination of specific 45 
frequencies in a digital signal. 46 

Much of the DSP application is centred on frequency analysis 47 
because the important information may be encoded in the 48 
frequency content of the signals. In telecommunication 49 
applications, for example, various channels or streams of data can 50 
be modulated on various frequencies, while in audio processing, 51 
frequency analysis of a signal may become very vital in noise 52 
reduction or equalization. Traditional frequency analysis tools, such 53 
as the Fast Fourier Transform, are incredibly powerful means of 54 
gaining an overview of the frequency spectrum of a signal. 55 
However, they are sometimes rather computationally expensive 56 
when only a very few frequencies need to be known. That is where 57 
the Goertzel algorithm excels. The Goertzel algorithm is of 58 
immense use where computational efficiency is a big factor, since it 59 
is optimized for individual frequency or small sets of frequencies 60 
detection. In contrast to the 61 

62 

FFT, the computation of the whole spectrum is done with some 63 
redundancy. 64 

The Goertzel algorithm comprises two major phases: the 65 
processing phase and the evaluation phase. In the processing 66 
phase, it applies a difference equation to the input signal, much 67 
like a digital filter. This filter, however, is designed with 68 
coefficients that make it resonate at a target frequency, effectively 69 
amplifying the frequency component of interest while attenuating 70 
others. The difference equation used in this phase is such that it 71 
accumulates energy at the target frequency over time; the final 72 
value reflects the magnitude of the frequency component in 73 
question within the signal. 74 

The evaluation phase of the Goertzel algorithm is the second 75 
stage, in which the algorithm uses the final states of the filter to 76 
compute the magnitude of the target frequency component. This 77 
involves final states of the filter derived for magnitude and 78 
effectively quantifying the strength of the target frequency within 79 
the signal to allow for precise detection and analysis. 80 

One of the major advantages of the Goertzel algorithm is its 81 
efficiency. The algorithm performs a constant number of 82 
operations for each frequency to be estimated; hence, in cases 83 
where only a small set of frequencies is under analysis, it is much 84 
more efficient than the FFT. This makes the Goertzel Algorithm 85 
very useful in real-time applications and on systems with limited 86 
processing power or low memory, such as embedded systems. This 87 
algorithm is simple, and its simplicity makes it possible to be 88 
implemented on very basic hardware platforms; this ranges from 89 
microcontrollers to even digital signal processors. 90 

An extremely practical application of the Goertzel algorithm is 91 
in Dual-Tone Multi-Frequency decoding. In fact, when any key on 92 
a dual-tone phone keypad is pressed, it essentially generates two 93 
different frequencies: one from the low-frequency bank and one 94 
from the high-frequency bank. Since the Goertzel algorithm is 95 
excellent at detecting such frequencies, it can easily detect which 96 
key has been pressed. This capability is very critical in 97 
telecommunication systems, including in applications such as 98 
automated call routing and IVR systems. The robustness and 99 
accuracy of the algorithm also make it quite effective in noisy 100 
environments, further greatly enhancing its utility in real-world 101 
applications. 102 

Put simply, the Goertzel algorithm is an important tool in the 103 
area of digital signal processing, providing a very focused and 104 
efficient approach to analysing frequencies. It is an irreplaceable 105 
technique for applications as far apart as telecommunications and 106 
audio processing, due to the capability of this algorithm to isolate 107 
and analyse specific frequencies with minimum computational 108 
overhead in doing so. Understanding and implementing the 109 
Goertzel algorithm not only enhances the capacity of performing a 110 
selective frequency detection but also deepens the broader 111 
understanding of DSP concepts and their practical application in 112 
the different technological domains. 113 

II. EQUATIONS 114 

A. Difference Equation 115 

The Goertzel algorithm is based on a difference equation at the 116 
core, which virtually equals to a digital resonator, for frequency 117 
detection. The basic difference equation is: 118 

s[n]=x[n]+2cos(ω)⋅s[n−1]−s[n−2] 119 

In this equation, s[n] represents the current output of the filter at 120 
sample n, while x[n] is the input sample at the same point. The 121 
terms122 
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s[n−1] and s[n−2] are the outputs of the filter from the previous two 
samples. The term ω denotes the normalized angular frequency of 
the target frequency, defined as 𝜔=2𝜋𝑓/fs , where 𝑓 is the 
frequency of interest and fs is the sampling rate. By iterating this 
difference equation across all input samples, the algorithm 
effectively isolates the energy associated with the target frequency, 
enabling precise detection within the signal. 

B. Final State Calculation 

Once all samples have been processed through the difference 
equation, the Goertzel algorithm calculates the final states to 

determine the frequency component‟s real and imaginary parts. The 

real part is computed using: 
𝑆𝑟 = s[N−1] − cos(ω) * s[N−2] 

Here, s[N−1] and s[N−2] are the final outputs of the filter, 

representing the most recent samples. The term cos(ω) adjusts for 

the phase of the target frequency. The imaginary part is given by: 

𝑆𝑖 = sin(ω) ⋅ s[N−2] 
where sin(ω) accounts for the phase shift in the orthogonal 

direction. These components, 𝑆r and 𝑆𝑖, are then used to compute 

the magnitude of the target frequency: 
  

∣X(f)∣=√𝑠2 + 𝑆2 

This magnitude provides a measure of the strength of the frequency 

f within the signal, allowing for accurate frequency detection. 

C. Alternate Difference Equation 

An alternate formulation of the Goertzel algorithm utilizes a 

variant of the difference equation: 
𝑄𝑛 =x[n]+2cos (2πk/N) * Q (n−1) − Q (n−2) 

In this version, 𝑄𝑛 is the output of the filter at sample 𝑛 and 2𝜋𝑘/N 
represents the normalized angular frequency for discrete frequency 

bins. Here, 𝑘 is the bin index corresponding to the frequency of 

interest, and 𝑁 is the total number of samples in the analysis 

window. This formulation provides an alternative method for 
computing the frequency response, often used in discrete Fourier 

transform applications and signal analysis. 

D. Magnitude Calculation with Alternate Form 

Using the alternate difference equation, the squared magnitude 
of the frequency component k can be computed as: 

|yk(N)| = Q2(n) + Q2(n-1) – 2cos(2πk/N) Qn * Qn-1 
In this equation, 𝑄n and 𝑄n-1 are the filter outputs at the final 

points in the analysis window. The term 2cos(2𝜋𝑘/N) reflects the 

cosine coefficient associated with the frequency bin index 𝑘. This 

expression combines the squared outputs and cross-terms to 

determine the magnitude squared of the frequency component, 
offering an efficient way to compute frequency content. 

E. Simplified Final State Calculation 

A simplified form of the squared magnitude calculation is 
given 

III. TASKS 

This will entail the study and implementation in C of the 
Goertzel algorithm for single frequency detection. This forms the 
basis of this project: understanding the basic working of the 
algorithm and translating it into a C program. The Goertzel 
algorithm will be efficient for the identification of specific 
frequencies in a signal. In applications like DTMF tone detection, 
this might turn out to be very useful. It will show how this 
algorithm filters out and processes a desired frequency, which 
becomes a stepping-stone toward more advanced frequency 
detection tasks. 

The second task is an expansion in that it requires completing 
a project able to detect all the 15 DTMF digits. This involves the 
following steps: Copy the provided data bin file into the CCS 
project environment. You will need to work through the first three 
TODO sections of the code files provided to apply the Goertzel 
algorithm to decode the tone data from the file. Finally, you should 
fill in the last TODO section of util file so that this program 
outputs an audio file that contains the decoded tone and is similar 
to the reference data_audio.wav. The third assignment is to 
optimize the performance of the Goertzel algorithm. Concretely, it 
means that you have to modify the C code to use intrinsics and 
compiler optimizations and then measure computational cycles 
with and without these improvements. It is expected that this 
optimization would improve the efficiency of the algorithm so 
that, even with the additional complexity in it to detect multiple 
frequencies, it would perform well. 

A. Task 1 

The Goertzel algorithm, which is frequently used in 
applications like DTMF decoding in telecommunication systems, 

is an effective computational technique for identifying frequency 

components in a digital signal. 
This task describes the application of this technique to identify, 

from provided data, a single pre-defined frequency. 

The below figure represents the snippet of code written for 

accomplishing the task.

by: 
|Yk(N)|2 = Q2(n) + Q2(n-1) – Coeff * Qn * Qn-1

where Coeff is the coefficient calculated as 2cos(2πk/N). This 
formula simplifies the magnitude calculation by incorporating the 

cosine term directly into the equation. The term Coeff adjusts for 

the phase shift of the target frequency, and the resulting magnitude 

squared reflects the strength of the frequency component in the 
signal. 

F. Summary 

These combined equations enable the Goertzel algorithm to be 

very effective in detecting frequencies within a digital signal. The 

difference equation serves to isolate a frequency of interest, while 
the final state calculations and magnitude equations follow through 

on the measurements and quantification of that frequency's 

presence. This set of alternate formulations with simplified 

calculations is useful for flexibility and efficiency in many signal 
processing situations. 

 

Fig. 1. Code Snippet for detecting one frequency 

The implementation of the code is explained as follows : 

w calculates the angular frequency in radians per sample, which is 

used to detect the target frequency freq. coef_1 is calculated using 

the cosine of w, which is part of the Goertzel algorithm's recursive 
formula. prod1 and prod2 are intermediate variables used in the 

recursive formula. delay, delay_1, and delay_2 are part of a 

recursive filter setup to compute the necessary terms over time. 

This sequence of assignments updates the delays which simulate 
the filter's memory. 

The block inside the if statement executes once all the samples 
(NO_OF_SAMPLES) have been processed. It calculates the final



 

 

Goertzel value, which represents the magnitude of the target 

frequency component within the signal. prod1, prod2, and prod3 

compute the terms required to calculate the magnitude of the 
detected frequency using the Goertzel-specific algorithm. Goertzel 

value is computed using the square root of the sum and differences 

of these products, which yields the magnitude of the frequency 

component at freq. The delays and sample counter N are reset for 
the next batch of processing. 

In this task, a sample with single tone at 697 Hz is generated and 

then detected. 

Fig 2 shows the magnitude of the frequency 697 Hz. 

 

 

Fig. 2. Goertzel value for 697 Hz 

In order to make sure that the code works properly it was run to 

detect other requencies. Fig 3 shows the magnitude for the 

frequency 941 Hz. 
 

 

Fig. 3. Goertzel values for 941 Hz 

It can be observed that the magnitude for 697 Hz is more than 941 

Hz, which confirms the reliability of the code. 

B. Task 2 

This task explains the implementation of the Goertzel algorithm 

to detect Dual-tone multi-frequency (DTMF) signals. The 

algorithm decodes the provided 8-digit tone from a binary data file 

and generates an equivalent audio file. 

a) This part consists of reading the data from the given binary 

file, as shown in the below code snippet of Fig 4. 

 

 

Fig. 4. Code Snippet for reading binary data 

The file data.bin is opened in read-binary mode. If the file doesn't 

exist or can't be opened, an error message is printed, and the 
program exits with an error code. The program reads 

NO_OF_SAMPLES of 2-byte elements from the file into the data 

array. Hence the data read is of the format „signed int16‟. Memory 

is allocated dynamically for buffer. The size allocated here is 
sufficient to hold a large number of samples i.e., 160,000 short 

integers. 

 

b) This part implements the feedback and feedforward loop of 

the Goertzel algorithm to detect all the eight frequencies 

and based on the Goertzel value, the key pressed is found 

out. 
 
TODO 1 implements the feedback loop of the Goertzel algorithm, 

shown in the Fig 5. 
 

Fig. 5.  Code for TODO 1 

s_prev and s_prev2 are arrays that store state values for each of 
the 8 frequencies being monitored. For each of the 8 frequencies, 

the code calculates the normalized frequency omega, its cosine, 

and the Goertzel coefficient. Using the Goertzel algorithm 
formula, the code updates the state variables based on the current 

input and the previous states. This loop effectively filters the input 

signal and prepares the state variables for detecting the presence of 

specific frequencies associated with DTMF tones. 

TODO 2 completes the feedforward loop of the Goertzel 

algorithm, shown in the Fig 6.



 

 

 

 

 
Fig. 6. Code for TODO 2 

The algorithm runs the feedforward loop after processing a specific 

number of samples (206 in this case). For each of the 8 frequencies, 

the state variables are processed to get the final magnitude. The 

magnitudes are stored in the gtz_out array. 

TODO 3 provides implementation of the Goertzel algorithm for 

detecting DTMF (Dual-tone multi-frequency) tones on the Goertzel 

values output, shown in the Fig 7. 
 

 

Fig. 7. Code for TODO 3 

The code loops through the first four frequencies to find the row 

frequency with the highest magnitude and then through the next 
four frequencies to find the highest column frequency. The detected 

row and column indices help to look up the corresponding digit and 

store it in the result array. For each sample the detection loops goes 

and the corresponding result array gets populated. 

 

c) This part implements the code to generate DTMF tones 

based on the keys detected, and finally generating an audio 

file. 
The implementation part is shown in the Fig 8. 

Fig. 8. Code for generating audio file 

The algorithm starts with determining the number of keys and 

allocating memory for the total samples required for the DTMF 
sequence. Here there were in total 8 keys. For each key the 

duration of the tone specified was 0.5 seconds. Hence with a 

sampling rate of 

8 KHz, each key requires 4000 samples. The function 
generateDTMFTone loops through the keys detected to generate 

the DTMF tone and store it in the appropriate position in the 

samples array. Post generation, the samples are written to the 

audio file. 

Fig 9 shows the detected keys present in the given binary data file. 
And the corresponding audio file is generated too. 

 

Fig. 9. Result for task 2 

● Use either SI (MKS) or CGS as primary units. (SI 
units are encouraged.) English units may be used as 
secondary units (in parentheses). An exception 
would be the use of English units as identifiers in 
trade, such as “3.5-inch disk drive”. 

C. Task 3 

This task quantifies the performance of the Goertzel algorithm 

by counting the number of clock cycles required to loop through 
the algorithm. The cycles for feedback and feedforward loops are 

tallied separately. 

Fig 5 and Fig 6 shows the code for calculating the time elapsed 

through feedback and feedforward loops respectively.



 

 

Fig 9 shows the number of cycles took for feedback and 

feedforward loops before optimization which are 3996 and 1603 

respectively. 
 

The cycle count of the Goertzel algorithm can be reduced using 

compiler switches and intrinsics. 

Compiler switches are commands or settings that are used during 
the compilation process to modify the behaviour and processing of 

the compiler. They are often referred to as compiler options or 

compiler flags. The optimization level, the kinds of warnings that 

are generated, the debug information that is included in the output, 

and many other elements of the compilation process may all be 

impacted by these settings. 

Intrinsics are a kind of function that many compilers offer that let 
programmers access processor-specific instructions straight out of 

the box without requiring them to create assembly code. By 

allowing software to leverage the sophisticated features of 

contemporary processors straight from code, intrinsics fill the gap 
between high- level languages and low-level assembly. 

 

Fig. 10. Values before optimizing 
 

 

Fig. 11. Values optimizing to 

The optimizations used here are Optimization Level (--opt level, - 

O) and Optimize for code size (--opt_for_space,-ms). „-O’ 

controls the general optimization level applied by the compiler 

when generating code. Here level 3 is employed. This level 
improves the performance of the resulting executable code at the 

cost of longer compile time. It enables more aggressive 

optimizations which includes loop unrolling, inlining of functions, 

and vectorization. „- ms’ directs the compiler to reduce the size of 
the generated code, which is particularly useful for memory-

constrained environments. Here level 3 is used. At this level, the 

compiler aggressively changes the way code is generated to 

minimize the footprint, which includes omitting inline expansions, 
using smaller libraries and techniques that reduce size at the cost of 

execution speed. 

 
Fig 10 shows the number of cycles obtained after optimization 

which are 3600 and 1148 respectively. 

 

 
Fig. 12. Number of cycles after optimization 

The optimization of the Goertzel algorithm through compiler flags 

and intrinsics decently enhanced its execution efficiency. These 

results highlight the importance of targeted optimizations in the 
development of high-performance DSP applications. 

IV. CONCLUSION 

This report shall therefore extensively cover all aspects 
of the implementation and optimization of the Goertzel algorithm 

in C for frequency detection tasks. The first task involves studying, 

then implementing, the Goertzel algorithm to detect a single 

frequency that has been successful in showing foundational steps 
needed for isolating and analyzing certain frequency components 

in a digital signal. This implementation was checked with the use 

of code snippets and frequency magnitude visualizations, which 

proved the accuracy and reliability of the algorithm. In turn, this 
created the basis for more complex tasks of multiple frequency 

detection. 

In second task was the extension of the Goertzel algorithm to 
detect all 15 DTMF digits used in telecommunication systems. It 

read and decoded an 8-digit tone from a binary data file, generated 

a corresponding audio file that would compare with a reference 
audio, showed in detail the code snippets of the feedback and 

feedforward loops of the algorithm, and managed to correctly 

decode the tones. Finally, optimization of the Goertzel Algorithm 

is explained toward the end of the report, where performance was 
improved by activating compiler switches and intrinsics. It 

measured the cycle count before and after optimization. The report 

presented an effective decrease in processing time and pointed out 

the necessity of such optimizations in digital signal processing 
applications. All tasks performed accurately, hence ensuring that 

the Goertzel algorithm is effective for both single and multi-

frequency detection cases.
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