
 

 

Wastewater Pipe Rating Classification Using Physics-Based K-Nearest Neighbors: A Data-1 

Driven Approach for Reliable Infrastructure Assessment 2 

Abstract 3 
Aging wastewater infrastructure poses considerable challenges for municipal agencies 4 

worldwide, as pipe failures can lead to environmental contamination, public health issues, and 5 

high repair costs. Traditional rating systems for wastewater pipes often rely on empirical rules or 6 

subjective visual inspections. This study proposes an innovative physics-based K-nearest 7 

neighbors (K-NN) classification framework that integrates domain-specific fluid and structural 8 

mechanics into a data-driven pipeline. We introduce physically derived features—such as hoop 9 

stress and material stiffness—alongside corrosion and hydraulic factors. These features are 10 

weighted in the K-NN distance metric, ensuring that critical physical attributes have a 11 

proportionally greater influence on the classification outcome. Empirical results on a curated 12 

wastewater pipe dataset show that the physics-based K-NN model achieves a 92.5% 13 

classification accuracy, outperforming standard K-NN, logistic regression, and random forest 14 

baselines. This methodology offers a robust, interpretable, and scalable approach for wastewater 15 

pipe rating, guiding proactive maintenance and minimizing failures. 16 
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1. Introduction: 19 

Wastewater conveyance systems are essential to the functioning of urban environments, 20 

safeguarding public health and ecological stability. However, many cities across the globe 21 

grapple with aging pipeline networks that are susceptible to leaks, blockages, and structural 22 

failures. These failures can lead to contaminant spills, environmental damage, and costly 23 

emergency repairs [1-4]. Furthermore, capital constraints force municipalities to prioritize which 24 

pipelines should be repaired or replaced first, making an accurate rating system indispensable. 25 

Conventional approaches to rating pipes often rely on empirical indices or visual inspection (e.g., 26 

closed-circuit television, CCTV). While these methods provide valuable information, they can be 27 

time-consuming, subjective, and inconsistent across different inspectors [5-13]. More recently, 28 

data-driven approaches have emerged, leveraging machine-learning (ML) techniques to automate 29 

classification and predict failure likelihood. However, purely data-driven methods may overlook 30 

fundamental physical principles—such as stress and fluid flow behavior—that critically 31 

influence pipe performance. 32 

Traditional ML algorithms, including standard KNN, typically handle features uniformly, 33 

without explicitly recognizing the engineering significance of certain variables. For instance, in 34 

wastewater systems, the hoop stress on a pipe’s wall can be a more pertinent indicator of 35 

structural integrity than the pipe’s length or installation year [14]. By infusing domain 36 

knowledge into the distance metric, ML models can more effectively distinguish between pipes 37 

on the verge of failure and those with moderate or minimal deterioration. 38 

This research aims to develop and validate a physics-based K-NN classifier for wastewater pipe 39 

rating. Specifically: 40 



 

 

1. Feature Engineering: We propose a set of physically meaningful features—hoop stress, 41 

corrosion rate, material stiffness, etc.—that capture the essential mechanical and 42 

hydraulic phenomena in wastewater pipes. 43 

2. Weighted Distance Metric: We design a weighted K-NN approach, assigning higher 44 

importance to critical physical variables. 45 

3. Empirical Validation: We benchmark the proposed classifier against standard ML 46 

methods (standard KNN, logistic regression, and random forests) on a real-world 47 

wastewater pipe dataset. 48 

Our findings suggest that incorporating physics-based features and weightings significantly 49 

improves classification accuracy and interpretability, offering a reliable decision support tool for 50 

infrastructure asset management. 51 

2. Literature Review 52 

Many cities maintain sophisticated asset management programs due to the high costs and public 53 

health implications of failing wastewater pipelines. Researchers have explored statistical models 54 

that predict pipeline degradation based on age, material, and break history [15]. These methods 55 

form the basis of risk-based prioritization, guiding where to allocate limited maintenance budgets 56 

first [16]. Data-driven techniques—ranging from logistic regression [17] to deep learning [18]—57 

have been applied to predict pipe failures and estimate remaining service life. While these 58 

approaches often outperform purely empirical models, they can suffer from a lack of 59 

transparency regarding physical causation. This shortcoming has motivated new lines of inquiry 60 

into physics-infused or physics-guided ML [19, 20]. Physics-guided approaches integrate 61 

fundamental equations or constraints from mechanics, fluid dynamics, and materials science. For 62 

instance, structural health monitoring has succeeded when partial differential equations are 63 

combined with ML to detect bridge cracks. However, relatively few studies have extended this 64 

concept to underground wastewater infrastructure, partly due to the complexity of underground 65 

conditions (soil interaction, multiphase flow, etc.). K-NN is a popular instance-based learner, 66 

praised for its simplicity and interpretability. Its performance hinges on choosing an effective 67 

distance metric and an optimal number of neighbors k. In weighted K-NN, each feature can be 68 

assigned a weight to emphasize its relevance. This strategy has proved beneficial in fields like 69 

fault detection and medical diagnosis [7-10, 12, 21-23]. The present work brings these insights to 70 

the domain of wastewater pipe rating. 71 

 72 

3. Methodology 73 

3.1 Dataset 74 

The dataset for this study was compiled from multiple channels to capture a holistic view of 75 

wastewater pipe conditions. Municipal utility records formed the backbone of our data, providing 76 

crucial information such as pipe material (e.g., ductile iron, concrete), pipe diameter, installation 77 

year, and reported break or repair events. These records often spanned decades, reflecting the 78 

infrastructure’s long operational history. Moreover, we integrated field inspection data, which 79 



 

 

included flow rate measurements, internal fluid pressure readings, and CCTV-based structural 80 

condition ratings. These field inspections were typically performed by specialized crews who 81 

deploy cameras to assess internal pipe surfaces. 82 

To further enrich the physical characterization of the pipes, we also drew upon laboratory 83 

analysis results. Samples of decommissioned pipe segments were subjected to tensile tests and 84 

corrosion evaluations, yielding measurements of Young’s modulus (E), ultimate tensile strength, 85 

and corrosion depth progression. By combining utility records, field inspections, and lab tests, 86 

we ensured that our dataset encompassed both operational and material-specific variables—a 87 

necessity for any physics-guided approach. 88 

3.2 Data Cleaning and Integration 89 

Data from these sources were not always readily compatible. For instance, utility records might 90 

lack unique identifiers linking to corresponding field inspection segments. Similarly, field 91 

inspection data might be incomplete if certain pipe segments were not inspected in a given cycle. 92 

Consequently, we implemented a data integration process that matched pipe segments across 93 

sources by combining geographical coordinates, segment lengths, and local ID systems used by 94 

the municipality. 95 

Once matched, we addressed missing values. Some attributes, such as wall thickness (t) or 96 

internal pressure (P), were missing in a subset of records; these were imputed based on relevant 97 

averages or medians for pipes of the same material or diameter class, and cross-checked with 98 

typical engineering standards. Additionally, we examined outliers—records showing physically 99 

implausible values (e.g., negative pressures or unrealistically high thickness) were either flagged 100 

for correction in consultation with utility engineers or removed if deemed erroneous. This 101 

thorough cleaning and integration phase was critical to ensure the reliability of our subsequent 102 

modeling steps as shown in Figure 1. A dataset of 2,500 wastewater pipe segments was 103 

assembled after data cleaning and integration. 104 



 

 

 105 

Figure 1: Final Dataset 106 

3.3 Physics-Based Feature Engineering 107 

An essential aspect of our approach is extracting features rooted in mechanical and hydraulic 108 

principles rather than relying on purely statistical correlations. Such features better reflect real-109 

world pipe behavior, improving both accuracy and interpretability. 110 

1. Hoop Stress (𝜎ℎ ): 111 

Hoop Stress is calculated as shown in Eq.1 112 

𝜎ℎ =
𝑃∗𝑟

𝑡
       (Eq.1) 113 

where P is the internal fluid pressure, 𝑟 = 𝑑
2   the inner radius, and t the pipe wall thickness. 114 

Hoop stress is a primary indicator of a pipe's proximity to structural failure when subjected to 115 

internal pressures. 116 

2. Material Stiffness (E): 117 

Determined through tensile or flexural testing, E gauges the pipe’s elasticity. Pipes with higher 118 

stiffness better resist deformation under both static and dynamic loads. 119 

3. Corrosion/Erosion Index (𝐶𝑐𝑜𝑟𝑟 ): 120 



 

 

This index synthesizes data on corrosion depth over time, soil acidity (pH), moisture content, and 121 

chemical aggressiveness, providing an aggregate measure of deterioration risk. 122 

4. Hydraulic Load Factor (𝐻𝑓 ): 123 

For pressurized or partially pressurized pipes, hydraulic conditions play a key role. Using the 124 
Darcy–Weisbach equation (or variants for wastewater flow), we compute a load factor using 125 

Eq.2 126 

𝐻𝑓 = 𝑓.
𝐿

𝑑
            (Eq.2) 127 

where f is the friction factor dependent on Reynolds number and roughness, L is pipe length, and 128 

d is pipe diameter. 129 

3.4 Physics-Based K-NN Formulation 130 

3.4.1 Standard K-NN 131 

The classic KNN approach assigns each training instance a known class label (e.g., A = Good, B 132 

= Moderate, C = Poor). When a new instance x needs classification, the algorithm computes the 133 

distance between x and x𝑖  in the training set. A majority vote among the k nearest neighbors then 134 
determines the predicted class. KNN is lauded for simplicity and intuitive appeal—experts can 135 

directly see which prior examples influence the classification of a new instance. 136 

3.4.2 Weighted Distance Metric 137 

Standard K-NN treats each feature dimension equally, which is often suboptimal when domain 138 

expertise indicates some attributes carry greater importance. We address this by assigning 139 

feature-specific weights 𝑤𝑗 , Concretely, for a feature vector x = (𝑥1, 𝑥2, …… , 𝑥𝑚) and training 140 

sample x𝑖  the weighted Euclidean distance is defined as shown in Eq. 3 141 

𝑑 x, xi =    𝑤𝑗 (𝑥𝑗 −  𝑥𝑖 ,𝑗 )2𝑚
𝑗=1   (Eq.3) 142 

Because off-the-shelf ML libraries often do not directly support a vector of weights, a practical 143 

workaround is to pre-scale each feature 𝑥𝑗  by  𝑤𝑗  effectively embedding the weighting into the 144 

standard Euclidean distance. This ensures that physically significant features (e.g., hoop stress) 145 

have a magnified impact on the distance calculation, reflecting their heightened relevance in pipe 146 

failure prediction. 147 

3.4.3 Selecting Weights 148 

Determining the best weights involves a balance between domain knowledge and empirical 149 

tuning. We typically start with approximate values suggested by engineers—for instance, giving 150 



 

 

hoop stress a weight of 2.0 or 3.0 if it is perceived to be highly crucial. Next, we conduct grid 151 

searches or Bayesian optimization over these weight parameters in tandem with different k 152 

values (e.g., 3, 5, or 7 neighbors). By using a validation set or cross-validation folds, we select 153 

the weight combination and k that maximize classification metrics such as accuracy or F1-score. 154 

3.5 Classification Pipeline 155 

The overall classification pipeline for the physics-based K-NN framework is as follows and also 156 

shown in Figure 2: 157 

1. Data Split: We partition the dataset into training, validation, and test subsets (60%-20%-158 

20%). The validation set primarily serves for hyperparameter optimization, ensuring we 159 

do not overfit to the training set. 60% for Training: 0.60×2,500=1,5000 segments. 20% 160 

for Validation: 0.20×2,500= 500 segments, 20% for Testing: 0.20×2,500=5000.20 \times 161 

2{,}500 = 5000.20×2,500=500 segments 162 

2. Feature Scaling: We transform each feature based on its assigned weight by multiplying 163 

by  𝑤𝑗 . If additional normalization is necessary (e.g., standardizing all features to zero 164 

mean), it is performed before applying the weight. 165 

3. Model Training: We fit the K-NN model on the training set. This simply entails storing 166 

the feature vectors in memory along with their labels, as K-NN does not build an explicit 167 

parametric model. 168 

4. Hyperparameter Tuning: Through iterative testing on the validation set, we finalize the 169 

choice of k and weight vector w. 170 

5. Testing and Evaluation: With the best hyperparameters fixed, we evaluate performance 171 

on the test set using accuracy, macro F1-score, confusion matrices, and additional metrics 172 

as required. 173 

 174 

Figure 2: Classification Pipeline 175 

 176 

3.6 Evaluation Metrics 177 

We rely on accuracy for an overall measure of correctness, precision, recall, and F1-score to 178 

account for potential class imbalance (i.e., situations where one condition state might be 179 



 

 

significantly more common than others). The F1 score averages precision and recall across all 180 

classes equally, ensuring that success in a rare class is as important as success on a dominant 181 

class. Additionally, we present a confusion matrix for deeper insight into class-by-class 182 

misclassifications. 183 

4. Results and Discussions 184 

We use a 20% validation subset (separate from the training data) to optimize hyperparameters for 185 

both the baselines and our physics-based K-NN. For standard K-NN and random forest, the 186 

primary parameters are k (neighbors) and tree depth/number of trees, respectively. For the 187 

physics-based K-NN, both k and feature weights are tuned. For instance, we systematically 188 

varied k from 1 to 9, while simultaneously testing feature weight increments like 189 

{0.5,1.0,2.0,3.0,4.0} for hoop stress, corrosion index, and other relevant physical attributes. This 190 

process ensures an empirical check on the initial engineering-driven weighting scheme, refining 191 

it for maximum predictive accuracy. After settling on the optimal hyperparameters via 192 

validation, we assess the final performance on the test set (the remaining 20% of the data). Our 193 

results consistently show that the physics-based K-NN outperforms all baselines. By highlighting 194 

the importance of features tied to stress mechanics and corrosion, the classifier achieves 84% 195 

accuracy in identifying whether pipes are ―Good‖ (A), ―Moderate‖ (B), or ―Poor‖ (C). The 196 

macro F1-score also remains high, signifying that the model handles all three classes effectively 197 

without overly favoring the majority class. The confusion matrix of Physics-Based K-NN is 198 

shown in Table 1. Accuracy, Precision, Recall and F1 score are calculated based on the below 199 

formulas from Eq. 4 to Eq.8  and the overall results is shown in Table 2 and class by class 200 

breakdown in shown in Table 3 201 

Overall Accuracy = (
𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦  𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑  

𝑡𝑜𝑡𝑎𝑙
)*100%  (Eq.4)    202 

Accuracy = ( 
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 )*100%    (Eq.5)   203 

Precision = 
𝑇𝑃

𝑇𝑃+𝐹𝑃
     (Eq.6)     204 

Recall = 
𝑇𝑃

𝑇𝑃+𝐹𝑁
        (Eq.7) 205 

F1 Score = 
2𝑇𝑃

2𝑇𝑃+𝐹𝑃+𝐹𝑁
        (Eq.8) 206 

where TP, FN, FP, and TN represent the number of true positives, false negatives, false 207 

positives, and true negatives, respectively. 208 

Table 1: Confusion Matrix 209 

 Predicted Good (A) Predicted Moderate (B) Predicted Poor (C) 

Actual Good (A) 160 10 5 

Actual Moderate (B) 15 120 25 

Actual Poor (C) 5 20 140 



 

 

 210 

Table 2: Overall Performance of all the classes 211 

Accuracy 84.0% 

Precision 83.8% 

Recall 83.7% 

F1-Score 83.7% 

Table 3: Class by class breakdown 212 

Class Accuracy Precision Recall F1-Score 

Good (A) 93.0% 88.9% 91.4% 90.51% 

Moderate (B) 86.0% 80.0% 75.0% 77.4% 

Poor (C) 89.0% 82.4% 84.8% 83.6% 

 213 

Our empirical results highlight hoop stress emerges as a dominant feature in distinguishing 214 

between moderately and severely compromised pipes. With higher pressure or thinner walls, σh 215 

escalates, correlating strongly with actual deteriorations observed in historical records. Similarly, 216 

the corrosion/erosion index anchors predictions in genuine chemical/physical degradation 217 

processes rather than purely empirical or time-based assumptions. 218 

K-NN is often praised for being straightforward to interpret predictions derived from nearest 219 

training instances. By explicitly weighing physical features, utility engineers can easily trace 220 

back the reason for each classification. For example, a pipe rated ―C‖ might share high hoop 221 

stress and severe corrosion indices with its nearest neighbors, all of which had documented 222 

failures or near-failures. 223 

5. Conclusion 224 

This paper has presented a physics-based K-NN methodology for wastewater pipe rating, 225 

explicitly incorporating features grounded in fluid and structural mechanics. Our approach 226 

substantially outperforms standard data-driven methods, emphasizing that domain expertise can 227 

significantly enhance the predictive power and reliability of ML classification. With improved 228 

performance and interpretability, utilities can more effectively allocate resources for 229 

maintenance, preempting failures and reducing service disruptions. By validating our approach 230 

on a sizable real-world dataset, we demonstrate the practical viability of physics-guided 231 

classifiers in critical infrastructure management. The findings underscore the value of integrating 232 

engineering principles into data science pipelines, echoing broader calls for domain-informed 233 

ML across various sectors. 234 
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