ISSN: 2320-5407

International Journal of Advanced Research

Publisher's Name: Jana Publication and Research LLP

www.journalijar.com

REVIEWER'S REPORT

Manuscript No.: 50321

Date: 19-02-2025

Title: YOLOv10 and SAM 2.1 for Enhanced MRI Segmentation and Improved Neurological Disease Diagnosis

Recommendation:	Rating	Excel.	Good	Fair	Poor
Accept after minor YES Accept after major revision Do not accept (<i>Reasons below</i>)	Originality			Yes	
	Techn. Quality			Yes	
	Clarity		Yes		
	Significance		Yes		

Reviewer Name: Gulnawaz Gani

Reviewer's Comment for Publication

This paper presents fusion of YOLOv10 and SAM 2.1, significantly enhancing MRI-based neurological disease diagnosis with superior accuracy and interpretability. The comprehensive dataset, explainable AI approach, and well-balanced performance analysis make it a good contribution to medical AI research.

Detailed Reviewer's Report

- The paper Combines YOLOv10 for object detection and SAM 2.1 for precise segmentation, enhancing MRI-based neurological disease diagnosis.
- Uses **12,121 MRI images** across **12 classes**, evaluating six YOLOv10 models, with **YOLOv10-X** achieving top accuracy.
- Utilizes plasma colormap visualization for better interpretability, aiding clinical decisionmaking.
- Benchmarks against existing models, demonstrating superior detection, segmentation, and classification performance.
- Highlights **trade-offs** between lightweight (real-time) and high-accuracy models for different **medical applications**.
- Proposes multimodal imaging (CT, PET), edge-device deployment, and enhanced XAI for real-world medical use.
- The paper is a good contribution to the journal.