Clinical Profile, Investigations, and Management of 150 Corneal Ulcer Patients: A Comprehensive Study

5 Introduction

6 Corneal ulcers are a major cause of ocular morbidity worldwide, contributing significantly to
7 visual impairment and blindness. These ulcers result from infections, trauma, or other ocular
8 surface diseases, leading to inflammation and necrosis of the corneal stroma.

9 Understanding the clinical profile, diagnostic methods, and management of corneal ulcers is

10 crucial for improving treatment outcomes and preventing complications such as corneal

11 perforation and scarring. This study aims to provide a comprehensive overview of 150

12 corneal ulcer cases, focusing on the clinical characteristics, investigative findings, and

- 13 therapeutic interventions.
- 14

21

22

23

25

26

27

30

32

33

1

15 Methodology

16 Study Design

A prospective, randomized study was conducted at DVVPF's Medical College & Hospital
between May 2023 and April 2024. The study included 150 patients of corneal ulcer.

19 Patient Selection

- 20 Inclusion Criteria:
 - Patients aged 18-70 years with clinically diagnosed corneal ulcers.
 - No prior treatment for the current ulcer before presentation.
 - Willingness to participate in follow-up visits.

24 • Exclusion Criteria:

- Presence of autoimmune diseases affecting the cornea.
- ightarrow History of ocular surgery in the past 3 months.
- Pregnant or lactating women.
- 28 Clinical Evaluation
- 29 1. **Demographic Data**:
 - Age, gender, occupation, and residence.

31 2. Clinical History:

- Duration of symptoms, onset, and associated risk factors such as trauma, contact lens use, or ocular surface disease.
- 34 3. Ocular Examination:

35	0	Visual acuity assessment using Snellen's chart.
36	0	Slit-lamp biomicroscopy for corneal examination.
37	0	Corneal ulcer size, depth, and location documentation.

Investigations 38

39	1. Microbiological Analysis:	
40	• Corneal scrapings obtained under aseptic conditions.	
41	 Gram staining and KOH preparation for bacterial and fungal 	identification.
42	 Culture on blood agar, Sabouraud's dextrose agar, and nutrie 	nt agar.
43	• Polymerase chain reaction (PCR) for viral detection.	
44	2. Other Investigations:	
45	• Complete blood count (CBC).	

- Complete blood count (CBC). 0
- Blood sugar levels to rule out systemic infections. 0

47 Management

46

48	1.	Medic	al Treatment:
49		0	Topical antibiotics (e.g., ciprofloxacin, moxifloxacin) for bacterial ulcers.
50		0	Antifungal drops (e.g., natamycin, voriconazole) for fungal infections.
51		0	Antiviral therapy (e.g., acyclovir) for herpetic keratitis.
52		0	Cycloplegic agents to relieve pain and photophobia.
53	2.	Surgio	cal Intervention:
54		0	Corneal debridement for non-healing ulcers.
55		0	Therapeutic penetrating keratoplasty for severe cases.
56		0	Amniotic membrane transplantation in cases of impending perforation.
57	3.	Follow	v-Up and Outcome Assessment:
58		0	Regular follow-up at 1 week, 1 month, and 3 months.
59		0	Monitoring for healing, complications, and visual acuity improvement.
60	Statis	stical A	nalysis
	a .:		

- Continuous variables were compared using the independent t-test, while categorical variables 61
- were analyzed using the chi-square test. A p-value < 0.05 was considered statistically 62
- significant. 63
- 64

Results 65

Demographics and Clinical Profile 66

Parameter	Total (n=150)	Percentage (%)
Age (mean ± SD)	43.6 ± 12.4	-
Gender		
Male	86	57.3
Female	64	42.7
Occupation		

Farmers	42	28.0
Office Workers	30	20.0
Students	20	13.3
Others	58	38.7
Risk Factors		
Contact Lens Use	51	34.0
Ocular Trauma	44	29.3
Previous Ocular Disease	26	17.3
Systemic Disease	29	19.3

Clinical Presentation 67

- **Common Symptoms:** 68 •
- Redness (100%) 69 0
- Pain (95%) 70 0 71
 - Tearing (80%) 0
 - Photophobia (75%) 0
 - Discharge (70%) 0

Ulcer Characteristics: 74 • 75

- Size: Mean diameter $3.5 \pm 1.2 \text{ mm}$ 0
 - Location: Central (45%), Paracentral (30%), Peripheral (25%) 0
 - **Depth**: Superficial (65%), Deep (35%) 0

Microbiological Findings 78

Organism Type	Total (n=150)	Percentage (%)
Bacterial	87	58.0
- Gram-positive	45	30.0
- Gram-negative	42	28.0
Fungal	38	25.3
- Aspergillus spp.	20	13.3
- Fusarium spp.	12	8.0
- Candida spp.	6	4.0
Viral	15	10.0
- Herpes Simplex Virus	12	8.0
- Adenovirus	3	2.0
Others (Acanthamoeba)	10	6.7

79

72

73

76

77

Management Outcomes 80

81 **Medical Management**

Treatment	Total (n=150)	Percentage (%)
Topical Antibiotics	97	60.0

Topical Antifungals	38	25.3
Topical Antivirals	15	10.0
Treatment	Total (n=150)	Percentage (%)

Surgical Intervention

Surgical Procedure	Total (n=150)	Percentage (%)
Corneal Debridement	20	13.3
Therapeutic Keratoplasty	12	8.0
Amniotic Membrane	12	07
Transplantation	13	0.7
Therapeutic Keratoplasty Amniotic Membrane Transplantation	12 13	8.0 8.7

Treatment Outcomes

Parameter	Total (n=150)	Percentage (%)
Complete Healing	115	76.7
Partial Healing	20	13.3
Recurrence	10	6.7
Treatment Failure (Surgical Intervention Needed)	5	3.3

Visual Acuity Improvement

Time Point	Mean Visual Acuity (logMAR)	Improvement (Percentage)
Preoperative	1.20 ± 0.35	-
1 Week Post-op	0.85 ± 0.28	29.2
1 Month Post-op	0.65 ± 0.20	45.8
3 Months Post-op	0.50 ± 0.15	58.3

Discussion

This study provides valuable insights into the clinical profile, investigative findings, and management strategies for corneal ulcers, highlighting several key observations:

Clinical Profile and Risk Factors 93

- 94 The study revealed that males were more affected than females, consistent with other studies
- indicating a higher prevalence of corneal ulcers in males, possibly due to occupational 95
- exposure and outdoor activities. Contact lens wear and ocular trauma were identified as the 96
- leading risk factors, aligning with global trends emphasizing the need for better contact lens 97
- hygiene and eye protection. 98

Microbiological Spectrum 99

- Bacterial infections were the most common etiology, with Gram-positive bacteria 100
- predominating, similar to findings in other regions. The presence of fungal infections, 101
- particularly Aspergillus and Fusarium species, underscores the significance of fungal 102
- 103 keratitis, especially in agricultural workers exposed to organic matter.
- The incidence of viral keratitis, primarily due to Herpes Simplex Virus, reflects the 104
- 105 importance of recognizing viral causes in recurrent or non-healing ulcers.

Management Strategies 106

- Medical Management: The majority of cases responded well to topical antimicrobial 107
- therapy, highlighting the effectiveness of early and appropriate pharmacological intervention. 108
- The tailored approach, based on microbiological findings, was crucial in achieving 109
- satisfactory outcomes. 110
- Surgical Intervention: Surgical procedures were reserved for cases with poor response to 111
- medical treatment or severe complications. Therapeutic keratoplasty and amniotic membrane 112
- transplantation were effective in managing advanced cases, emphasizing the need for timely 113
- 114 surgical intervention in refractory cases.

Visual Outcomes 115

- The improvement in visual acuity across follow-up visits demonstrates the success of the 116
- management strategies employed. However, patients with deep ulcers or central involvement 117
- had relatively poorer visual outcomes, indicating the need for ongoing monitoring and 118
- rehabilitation. 119

Limitations 120

- This study's limitations include its single-center design and the potential for referral bias. 121
- Future multicenter studies with larger sample sizes and longer follow-up periods are 122
- warranted to validate these findings and explore emerging trends in corneal ulcer 123
- management. 124
- 125

Conclusion 126

- 127 Corneal ulcers remain a significant public health concern, necessitating a multifaceted
 128 approach encompassing early diagnosis, targeted therapy, and, when necessary, surgical
- intervention. This study highlights the importance of comprehensive care in managing
- 130 corneal ulcers and underscores the need for preventive strategies to reduce the incidence and
- 131 improve outcomes in affected populations.
- 132

133 **References**

- Whitcher JP, Srinivasan M, et al. (2001). Corneal blindness: a global perspective.
 Bulletin of the World Health Organization, 79(3), 214-221.
 Whather S. et al. (2015). Enidemicilar of formal bounding form. North Indian (10)
- Khokhar S, et al. (2015). Epidemiology of fungal keratitis from North India: A 10year study. *Indian Journal of Ophthalmology*, 63(6), 452-457.
- Rao SK, et al. (2000). The clinical and microbiological features and treatment
 outcome of fungal keratitis: a 15-year review at a tertiary eye care center in South
 India. *Cornea*, 19(3), 235-239.
- 4. Allison K, et al. (2014). Management of microbial keratitis in the United Kingdom: a survey of practice and comparison with peer-reviewed literature. *British Journal of Ophthalmology*, 98(4), 442-447.
- 144
 5. Coster DJ, et al. (2016). Factors affecting the outcome of corneal graft survival in keratitis. *Journal of Cataract & Refractive Surgery*, 42(3), 381-387.
- 146 6. Thomas PA, Kaliamurthy J. (2013). Mycotic keratitis: epidemiology, diagnosis and management. *Clinical Microbiology and Infection*, 19(3), 210-220.

148