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Perfect s-geodetic fuzzy graphs

Abstract
The set of nodes which do not belong to any s-geodetic basis of a
fuzzy graph G is the Pseudo s-geodetic set of G and its cardinality is
called the Pseudo s-geodetic number of G. In this paper, fuzzy graphs
having Pseudo s-geodetic number zero are termed as Perfect s-
geodetic fuzzy graphs and some examples of Perfect s-geodetic fuzzy
graphs are exhibited. It is proved that complete fuzzy graphs on 2
nodes and fuzzy cycles having each arc of same strength are Perfect s-
geodetic fuzzy graphs.
Keywords:s-Geodetic basis, s-Geodetiggnumber, Pseudo s-geodetic set, Pseudo
s-geodetic number, Perfect s—geodetTcE]zzy graph.
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1 Introduction

Zadeh in 1965 [18] developed a mathematical phenomenon for describing the
uncertainties prevailing in day-today life situations by introducing the concept
of fuzzy sets. The theory of fuzzy graphs was later on developed by Rosenfeld in
the year 1975 [11] along with Yeh and Bang [17]. Rosenfeld also obtained the
fuzzy analogue of several graph theoretic concepts like paths, cycles, trees and
connectedness along with some of their properties [11] and the concept of
fuzzy trees [10],fuzzy interval graphs [7],cycles and co-cycles of fuzzy graphs [8]
etc has been established by several authors during the course of time. Fuzzy
groups and the notion of a metric in fuzzy graphs was introduced by
Bhattacharya [1]. The concept of strong arcs [4] was introduced by Bhutani and
Rosenfeld in the year 2003. The definition of fuzzy end nodes and some of their
properties were established by the same authors in [2]. The concept of
geodesic distance was introduced by Bhutani and Rosenfeld in [3] and using
this geodesic distance, Suvarna and Sunitha in [16] brought the concept of
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geodesic iteration number and geodesic number of a fuzzy graph into existence
and studied some of the properties satisfied by them. The same concepts Uging
u-distance was introduced by Linda and Sunitha in [5].The concept of sum
distance and some of its metric aspects were introduced by Mini Tom and
Sunitha in [6]. s-Gegmletic iteration number and s-geodetic number of a fuzzy
graph based on sum distance was introduced by Sameeha and Sunitha in [13].
The set of nodes of a fuzzy graph G : (V,o,u) which do not belong to any s-
geodetic basis of G is the pseudo s-geodetic set of G and its cardinality is called
the pseudo s-geodetic number of G [14]. In this paper, fuzzy graphs having
pseudo s-geodetic number zero are termed as perfect s-geodetic fuzzy graphs
and some examples of perfect s-geodetic fuzzy graphs are exhibited along with
some of their properties. Complete fuzzy graphs and fuzzy cycles are proved to
be perfect s-geodetic fuzzy graphs.

2 Preliminaries

In this section, a brief summary of some basic definitions in fuzzy graphs taken
from [3, 4, 9, 10, 16] are given.

A fuzzy graph [9] is a triplet G : (V,o,u) where o is a fuzzy sub set of a set V
of nodes and u is a fuzzy reldfllon on . ie, u(u,v) <o(u)Ao(v), Vu,v EV. We
assume that V is finite and non-empty, u is reflexive (i.e.,u(x,x)=0o(x), ¥ x)
and symmetric (i.e.,u(x,y)=u(y,x),¥ (x,y)). Also we denote the under- lying
crisp graph by G*(o%,u*) where o'={ueV/o(u)>0} and
w={(u, v)EVXV/u(u,v)>0}. Here we assume o*=V. A fuzzy graph is called a
complete fuzzy graph [HBif u(u,v) =o(u)Ao(v) Yu,v Ec*. A sequence of
distinct nodes ug,uy,..., U, such that pu(ui-1, u;)>0,i=1,2,...,n is called a path P,
[9] of length n. An arc of G with least non-




Zero membership value is the weakest arc of G. The degree of membership of a
weakest arc in the path is defined as the strength of the path. The path

becomes a cycle if uo=un, n=3 and a cycle is called a fuzzy cycle [10] if it
contains more than one weakest arc. The strength of connectedness [9]
between two nodes v and v is the maximum of the strengths of all paths
between u and v and is denoted by CONNg(u, v). The fuzzy graph G is said to be
connected if CONNg(u,v)>0 for every u,v in o*. An arc (u,v) of a fuzzy graph is
called strong [4] if its weight is at least as great as the strength of

connectedness of its end nodes u,v when the arc (u,v) is deleted and a u—v
path P is called a strong path if P contains only strong arcs.
For any path P:up—ui1—u2—...—un, length of P, L(P), is defined as

the sum of the weights of the arcs in P. That is, L(P)=2"p{y;-1,u;).
If n=0, define L(P)=0 and for n=1, L(P)>0.
For any two nodes u,v in G:(V.o,u), if P={P: P; is a u-v path,
i=1,2,3,...}, then the sum distance between u and v is defined as
ds(u,v) = Min{L(P;) : P,€P,i = 1,2,3,...}[6].

Let S be a set of nodes of a connected fuzzy graph G. The s-geodetic
closure[13] (S) of S is the set of all nodes in S together with the nodes
that lie on s-geodesics between nodes of S. S is said to be convex if S

contains all nodes of every u—v s-geodesic for all u,vin S. i.e, if (S) =S.

S is said to be s-geodetic cover (s-geodetic set) of G if (S)=V(G) and any
Coffer of G with minimum number of nodes is called an s-geodetic basis for
G. The s-geodetic number [13] of a fuzzy graph G: (V,o,u) is the number of

nodes in a s-geodetic basis of G and is denoted by s—gn(G).

The following results have been taken from [16).
Corollary2.1./16] For a complete fuzzy grapa G on 2 nodes, s—gn(G)=2.

Remark2.2.[13]Met C, n=3, be fuzzy cycles each of whose arcs are having
same strength. When n is even, the set of any two s-peripheral nodes is an s-
geodetic set of Cn. But when n is odd, no 2 nodes form an s-geodetic set and in
fact there exists an s-geodetic set on 3 nodes. Therefore, for cycles having each
arc of same strengtn

2; when n is even

s-gn(Cn )= 3 ; whennis odd




3 Perfect s-geodetic fuzzy graph

In graph theory, the concept of Perfect edge geodetic graph was introduced by
Stalin in [15] and in fuzzy graph theory, the ccept of Perfect geodesic fuzzy
graphs was developed using geodesic distance in [12].

In this paper, the vertex version of this concept in fuzzy graph theory is
developed using su distance and is termed as Perfect s-geodetic fuzzy graph.

Definition3.1.[14] Let G:(V,o,u) be a connected fuzzy graph and S be an s-
geodetic basis of G. Then the set of nodes which do not belong to any
s-geodetic basis of G is the Pseudo s-geodetic set S of G.

The cardinality of Pseudo s-geodetic set Sis called Pseudo s-geodetic number

and is denoteﬁby s—gn(G).

Definition3.2.A connected fuzzy graph G : (V,o,u) is said to be a Perfect s-
geodetic fuzzy graph if every node of G lies in any one of the s-geodetic
basis of G.

In other words, G is a Perfect s-geodetic fuzzy graph if its pseudo s-geodetic

Example3.3. Consider the fuzzy graph G given in Fig.1.

numbers — gn (G) = 0.

L]
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0.2 = 03
Fig.1

Here, the arc (e,f) is the weakest arc of G. ﬂ1={e,a,c,f} and Sa={e,b,d,f} are
both s-geodetic basis for G since (S1)=(52) =V(G).

Then the pseudo s-geodetic set S is V(G)—{a,b,c,d,e,f}=¢ and hence s—gn(G)=0.
Therefore G is a Perfect s-geodetic fuzzy graph.
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Proposition3.4.1f54,5>,...,Ssarethes-geodeticbasesofafuzzygraph
G:(V,ou), thenthepseudos—geodeticnumbers—gn'{6]=|ﬁ” i=1 S51.

Proof. LetSbethepseudos geodeticsetofG. Toshowthats gn(G)=
ek 5“| itisenoughtoshowthatS=N"

i=1 . =17
Letvbea nodeofGsuchthatvES.Thenbydefinition3.1,vdoesnot
Pelongtoanys-geodeticbasisofG.
i.e,v#ZS;i¥i=1,2,...,n
=vesVi=ld..,n

n

Conversely,letubeanodeofGsuchthatue N"s-, =
ThenuesV,i=1,2,...,n.
=>ugZsVi=1,2,...,n. B .
rom(l)and(2),5'=r‘1”5€-=1 i U

Proposition 3.5.A complete fuzzy graph on 2 nodes is a perfect s-geodetic
fuzzy graph.

Proof.ByCorollary2.1,thes-geodeticnumberofacompletefuzzygraphG on2

nodes iss—gn(G) =2.ThereforeS=V(G) is the uniqufl s-geodetic
basisofGandsobyProposition3.4,thepseudos-geodeticsetS=5=¢. Thus we

get s—gn (G) = 0.Hence by Definition 3.2, G is a perfect s-geodetic fuzzy graph.
-

Proposition 3.6.A fuzzy cycle G on n nodes, each of whose arcs are having same
strength, is a perfect s-geodetic fuzzy graph.

Proof.ConsiderthefollowingCases:

Case(1):niseven.
ByRemark2.2,thes-geodeticnumbers—gn(G)=2ifniseven.Clearly
Si={Vi, V(i+2)maan}, (L=<i<n),aretheonlys-geodeticbasesof G.Then

byProposition3.4,thepseudos-geodeticsetS=¢pandsos—gn(G)=0. HenceGlsa
perfects-geodeticfuzzygraph.

Case(2):nisodd.
ByRemark2.2,thes-geodeticnumbers—gn(G)=3ifnisodd.Clearly




S;:{v,—,v(,.#n__n)m?dn,v(,.#n_ul)mdf L(1<i<n)aretheonlys-geodetic .
basesofG.ThenbyProposition3.4,thepseudos-geodeticsetS= ¢and
sos—gn(G)=0.HenceGisaperfects-geodeticfuzzygraph. O

4 Conclusion
Thepseudos-geodeticsetofafuzzygraphGisdefinedasthesetofnodes of G which
do not belong to any s-geodetic basis of G and its cardinality iscalled the
pseudo s-geodetic number of G.In this paper, perfect s-geodetic fuzzy graphs
are defined to be those fuzzy graphs whose pseud s-geodetic
numberis0.ThatisifallnodesofthefuzzygraphGliesinatleastone of the s-geodetic
bases of G.A complete fuzzy graph on 2 nodes and fuzzy
cycles,eachofwhosearcsarehavingsamestrength,arefoundtobeperfect 5-
geodetic fuzzy graphs.
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