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The performance of PV systems is highly dependent on climatic 

hazards (wind, dust, low sunshine, etc.). Some of these hazards can 

even accelerate its degradation process during its life cycle if nothing is 

done in terms of maintenance policy. This paper aims to model the 

degradation process of PV systems under environmental conditions. To 

do this, a system study is first performed to analyze the experimental 

data of the PV system in question according to the location of the site 

and simulated under the PVsyst software to extract the parameters of 

the study. In a second step, taking into account the Markovian 

approach, passing rules are established to design our dynamic Bayesian 

model. To this model, we have integrated a maintenance policy 

decision node and performance indicators in order to reproduce the 

degradation process in the real context and under stress. We have 

associated the decision node to enable AI integration through 

reinforcement learning on this node. The simulation results show 

brilliantly the behavior of the PV system under environmental stress 

according to several scenarios (with or without IA).  Furthermore, 

simulation allows us (a) to observe and validate the experimental 

values taken during the tests on the PV, (b) to see their availability 

increase with reinforcement learning compared to the case without 

learning. At the same time, we note that the increase in this availability 

leads to a relative decrease in income. The model allows to evaluate the 

performance of the system and propose the best maintenance policy 

configurations according to the input parameters (transition parameters, 

maintenance cost). 
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1. Introduction:- 

PV systems are exposed to weather hazards (low sunshine due to clouds, dust, etc.), mechanical 

and electrical stress during operation (falling of solid particles on PV, forces of disturbance and 

vibration due to wind, short circuits due to mechanical vibrations of the wind, lightning, etc.), 

etc. 

Indeed, the impact of these phenomena on PV modules decreases the performance of the system 

over time. This decrease means that a degradation process occurs in the PV system and can lead 

to its partial or total failure if nothing is done to mitigate it.  

Then, it is necessary to follow the degradation process, quantify it over time to evaluate the 

performance of the system and decide on the optimal choice of maintenance policy to achieve a 

desired level of performance.  

The objective of this paper is to propose a method for evaluating the performance of PV modules 

under meteorological and mechanical stress. 

Indeed, it is about analyzing the degradation process of PV modules by building a model of the 

system degradation process capable of better understanding the performance of the PV system 

and making decisions based on the degradation parameters and the associated maintenance. This 

model of the degradation process transformed into a so-called Bayesian model obeys the Bayes 

principle and is subject to intelligence techniques in particular reinforcement learning in order to 

have a decision support system for performance evaluation and Choice of PV system 

maintenance policy. 

The rest of this paper is described as follows: Section 2 deals with the state of the art on system 

performance evaluation and associated modelling, Section3 sets out the methodology of our 

work, Section4 gives the results of the simulation and their discussions, and Section 5 provides 

the conclusion and perspectives to this work. 

2. Literature review:- 

Much work has been carried out in various fields with the application of Bayesian networks.  

This work can be classified into three points: 

The first point concerns the maintenance of industrial systems, including work on the analysis of 

machine failures and the choice of maintenance policy to ensure their availability or reliability  

( [1]; [2]; [3] [4] ), modelling and simulation of complex systems [5]; [6] , prognosis [7] and 

decision support for the maintenance of complex or multi-state systems [8]; [9].  

The second point deals with health optimization, in particular (a) medical diagnosis and 

modelling of influencing parameters in medical treatments ( [10]; [11]) (b) data uncertainty 

classification and quantification [12], genetic predisposition disease analysis [13].  

The third relates to AI in particular on climate data [14], prediction or risk assessment models 

[15], object recognition [16] and dynamic regulation [17].  

Indeed, the Bayesian network is widely used in several areas to evaluate the prediction, 

diagnosis, reliability and performance of systems related to industry, health, agriculture, etc. 

However, in relation to the energy system in particular, PV on modelling, performance study and 

failure analysis under environmental stress remain very little or poorly treated in the literature. 

Here in this work we will use dynamic Bayesian networks to evaluate the degradation process of 
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PV modules over time and propose a decision aid for maintenance based on the integration of 

artificial intelligence (learning by reinforcement). 

3. Methodology:- 

To develop our model, we will use the meteorological data of the study site (humidity, solar 

radiation, temperature, wind speed, dust, etc...) detailed by month, by year in PVsys software and 

calculate their probability of occurrence.   

From these variables related to meteorological data, mechanical and electrical shocks, we will 

build a Bayesian model where each of the variables is considered as a node. Indeed, this 

Bayesian model represents the degradation process of PV modules subjected to these 

meteorological, mechanical and electrical constraints. The implementation of the model is done 

in the environment of the Bayesialab software.  

The model thus constructed is studied and simulated according to four (4) scenarios in order to 

follow the evolution of the degradation process of the modules over time and to decide on the 

optimal choice of maintenance policy via artificial intelligence (reinforcement learning method). 

 

3.1.Modelling the degradation process of photovoltaic modules:-   

All systems whose future state of operation depends only on the present state can be described by 

a Markov process, those for which the probabilities of transitions between any states are not 

affected by time. 

The photovoltaic module is a model of multi-state systems, whose electrical production leaves an 

initial (normal) operating state to occupy in time more and more degraded production states until 

its major degradation. 

This degradation process is equivalent to a Markovian system which we will model by 

considering the different states of transitions occupied over time and the parameters of the 

transition rates of the system. 

3.1.1. Bayesian model of the PV degradation process:- 

We will model a dynamic Bayesian network of multi-state system (SME) type from the 

Markovian SME model by adopting passage rules. 

The rules for moving from the Markovian model to the dynamic Bayesian model are: 

 Transformation of the transition rate parameters into nodes and simultaneously integrating a 

decision node for maintenance policy but also performance indicators.   

 Transformation of the states occupied by the system over time. 

In the PV degradation process, we identified environmental and electrical variables that may 

affect the state of the PV. These variables can be degradation modes (corrosion, fading, 

delamination, crack and hot spot) that will determine the state of the PV at a given time. 

Environmental variables include: humidity, temperature, solar radiation, dust, mechanical 

variable refers to mechanical shocks. For the electrical variables, we take overvoltage and 

overcurrent. 

These variables were transformed into nodes to form a dynamic Bayesian network (RBD). 

At a certain time, we will observe that the system degrades from a state (t) to a state (t+1) under 

the control of the decision node which will decide the maintenance policy to adopt.  
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Figure 1: Markov model to PV module dynamic degradation Bayesian model 

The different states of the system and the transition rates between them are such that:  

State 1: corresponding to the normal state of the PV modules or there is no degradation; 

State 2: corresponds to the state of minimal degradation;  

State 3: corresponds to the state of major degradation; 

𝛼1 : Rate of degradation from normal to minimal degraded state; 

𝜆1 :  Failure rate from normal to minimal degraded state; 

𝜇1 :  Repair rate from minimal degraded to normal condition; 

𝛼2 : Rate of degradation from a minimal degraded state to a maximum degraded state; 

𝜆2 :  Failure rate from a less degraded state to a more degraded state;  

𝜇2 : Repair rate from a more degraded state to a less degraded state; 

𝛽1 :  Rate of passage, by the maximum preventive maintenance action from major degradation 
(state 3) to normal (state 1); 

𝛽2  :  Rate of passage, by the minimum preventive maintenance action, from the state of major 
degradation (state 3) to the minimal degradation (state 2); 

In our dynamic Bayesian model of the multi-state system E(t) and E(t+1) respectively denote the 

state of the system at time t and t t+1. The other nodes represent the probability ratios of the 

different variables and the transition rates between system states. 

3.2.Decision support for PV maintenance:- 

In the decision node, we have planned different maintenance policies:  

 No preventive maintenance ( No_PM),  

 Minimum Planned Maintenance (Min_PM) 

 Maximum preventive maintenance (Max_PM).  

We have defined three modalities for the state of degradation of the PV module:  

 No degradation (𝐸0),   

 Minimum degradation (𝐸1) 

 Major degradation (𝐸2).   
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We will study the model under different scenarios with or without learning on the photovoltaic 

module maintenance policy decision node using the influence diagram including utility nodes, 

decision nodes, probabilistic and deterministic nodes. 

We will observe how the photovoltaic module will behave in a state (t+1) time span under the 

influence of environmental and electrical parameters. 

Finally, a proposal for the choice of maintenance policy is made by simulation according to the 

different configurations of transition rates between states occupied by the system over time. 

 

 

Figure 2: Influence Diagram with Decision Support 

3.3.Study of maintenance costs and downgrading of the PV system:- 

For the evaluation of the photovoltaic (PV) modules maintenance policy, we integrate 

performance indicators such as: 

 System availability; 

 The cost of repair curative maintenance on multi-state system (Repair_Cost); 

 The minimum cost of preventive maintenance (Min_Cost_PM); 

 The maximum cost of preventive maintenance (Max_Cost_PM); 

 Income. 

We can calculate the maintenance cost by  

𝐂𝐬𝐲𝐬𝐭𝐞𝐦 = 𝐂𝐮𝐧𝐚𝐯𝐚𝐢𝐥𝐚𝐛𝐢𝐥𝐢𝐭𝐲 + 𝐂𝐝𝐞𝐠𝐫𝐚𝐝𝐞𝐝 𝐬𝐭𝐚𝐭𝐞 + 𝐂𝐟𝐚𝐢𝐥𝐮𝐫𝐞                                                                (1) 

Csystem  : System maintenance cost 

𝐶unavailability ∶ Cost of system unavailability 

𝐶𝑑e𝑔𝑟𝑎𝑑 ed  state  ∶ Cost associated with degraded states 

𝐶𝑑é𝑓𝑎𝑖𝑙𝑙𝑎𝑛𝑡 ∶ Cost associated with failed states 

𝐂𝐟𝐚𝐢𝐥𝐮𝐫𝐞 =  𝐱𝐃.𝐝
𝐣=𝟐 𝐏𝟐𝐣−𝟏                                                                                                          (2) 

𝐂𝐢𝐧𝐝𝐢𝐬𝐩 =  𝐩𝐫𝐨𝐝𝐮𝐜𝐭𝐢𝐨𝐧 𝐩é𝐧𝐚𝐥𝐢𝐭é × 𝐏 𝐄 𝐭 = 𝐢 𝟐𝐝+𝐦
𝐢                                                        (3) 
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To track the evolution of a given system, we consider a preventive maintenance policy decision 

variable called 

𝑥𝐷 =  
1          𝑃𝑟𝑒𝑣𝑒𝑛𝑡𝑖𝑣𝑒 𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒
0   𝑁𝑜 𝑃𝑟𝑒𝑣𝑒𝑛𝑡𝑖𝑣𝑒 𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒  

  

 

 

Figure 3: Dynamic Bayesian model of the PV system with integration of maintenance costs 

 

3.4. Simulation of the Bayesian model:- 

The simulation study is done over an operating time of 17000.  It is considered necessary to 

simulate over a long period of time in order to be in intensive use of the system under study [8].  

We will perform a simulation study to examine and determine the correct configurations of 

maintenance actions on a production system.  

In our simulation study, we will use the parameters of learning algorithms by reinforcing the 

following values: discount factor: 0.99; Learning rate 0.25 and initial exploration rate 0.50 for all 

cases of learning maintenance actions. We start with three modalities to be able to analyze the 

optimal level of preventive maintenance:  

-  No preventive maintenance;  

- Minimum preventive maintenance;  

- Maximum preventive maintenance. 

The level “zero preventive maintenance” means that no preventive maintenance action is taken, 

Minimum preventive maintenance is to return the system to a degraded but better operational 

state and maximum preventive maintenance is to return the system to its perfect initial state [8].  

The decision node D imposes one of the maintenance levels mentioned above and a learning 

algorithm allows to decide the right decision among the modalities at each iteration  

The Chapman-Kolmogorov equation for our model is: 

 𝑃𝑗
𝑘 = 13

𝑖  ; 0≤ 𝑡 ≤ 𝑇 

It is noted that: 

𝑃𝑗
𝑘  is the probability that the system will be in state j at time t; 
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𝑃𝑗
𝑘+1 is the probability of transition to state j. 

𝐥𝐢𝐦∆𝐭→𝐭
𝐏𝐣  𝐭+∆𝐭 −𝐏𝐣(𝐭)

∆𝐭
=

𝐝𝐏𝐣(𝐭)

𝐝𝐭
= 𝐏𝐣

𝐤+𝟏                                                                                        (4) 

 

Then, based on this table 1 and the Chapman-Kolmogorov equations, the probability 

distributions of the different nodes in our RBD model are calculated and put into their 

probability tables (TPC).  

 

Table 1: Distribution of probabilities of states 

 
 

4. Results and Discussions:- 

We will analyze the evolution of degradation of PV modules through our basic model with the 

consideration of all possible levels of preventive maintenance policy. 

The environmental and electrical parameters between the different degradation states of the 

modules to be studied are considered. The basic model of the system to be studied must indeed 

reproduce the different states of degradation over time as that of a Markov graph.  

We do a simulation of the degradation process of these modules which gives us the set of joined 

probabilities of the system’s degradation states over a time step of 17000. This choice of high 

value time steps allows to observe the degradation of modules over a long operating life.  

The figure below (Figure 4) shows the joint probabilities of different degraded states of operation 

of the modules after a time step of 17000. 

- 1.40% of the photovoltaic modules operate normally, which corresponds to the perfect 

state of operation of the 𝐸0 modules. 

- 4.70% of photovoltaic modules operate with minimal degradation.𝐸1. 

- 93.90% of the photovoltaic modules show major degradation 𝐸2. 
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Figure 4: Joint probabilities of system states 

Furthermore, the progression of the photovoltaic (PV) module degradation process for a 

designated state 𝐸0, which corresponds to the PV system's standard operating condition, is 

hereby presented. The degradation process exhibits a decline over time, contingent upon the 

adopted maintenance strategy, revenue, and production costs (see Figure 5). 

 

 

Figure 5: Evolution of the 𝐸0 degradation process 

Figure 6 illustrates the progression of the degradation process, commencing from state 𝐸1 

(minimal PV module degradation) and culminating at a production threshold of less than 10%, 

whereupon it undergoes a subsequent decline. 

 

Figure 6: Evolution of the E1 degradation process 
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Furthermore, Figure 7 demonstrates an escalating degradation process in state 𝐸2  (the state of 
maximum degradation) in comparison to state 1. 

 

Figure 7: The evolution of the degradation process of E2  

We note in this monitoring that at the initial instant State E(t) while considering 𝐸0 ( No_degr), 
the system follows a degradation process up to a time step of 1700, we obtain at instant (t+1), 

93,90% of 𝐸2  ( Maj_degr) ; 4.70% of 𝐸1  (Min_degr) and 1.40% of 𝐸0  against 0% of 𝐸1 (t) and 

𝐸2 (t) at the initial instant E(t). 

Furthermore, at time E (t) the probability of certain variables responsible for degradation such as: 

corrosion (6.45%); discoloration (18.74%) and delamination (8.30%) saw their values increased 

by (7.60); (19.30% and (9.10%) at time E (t+1) respectively.  

On the other hand, the probability of the other variables (crack and hot spot) was reduced. 

 

 
Figure 8: Evolution of different degradation modes 

Corresponding Author: - Thierno Madani SIIDIBE. 

Address: - Hybrid Renewable Energy Laboratory (HREL), University of Sciences, Techniques and 

Technologies of Bamako (Mali).. 
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4.1. Learning the model 

We will carry out simulation tests to study the maintenance policy as a function of performance 

indicators. To do this, we choose four cases with or without reinforcement learning, depending 

on two parameters: system availability and revenue. Income is the average gain obtained in an 

operating state of the modules over a time step of 17,000 in the operating phase. 

4.1.1. Case 1: Simulation without learning as a function of income 

Simulation studies give us around 24% availability with an average hourly income of around 

2102 euros over a time step of 17000 (Figure 10). 

 

Figure 9: Probability of system availability without learning as a function of income 

 

Figure 10: Simulation curve: without learning on node D as a function of income 

We can see from figure 10 that availability decreases over time, and this decrease has an impact 

on revenue, as they decrease together. We also observe that system availability drops to around 

6% at a time step of 17,000. This loss of availability should prompt us to review the maintenance 

policy at the revenue level, which is a function of availability. 

4.1.2. Case 2: Simulation with income-based learning:- 

Analysis of the simulation with learning as a function of income, we obtain the following figure: 

 
Figure 11: Probability of system availability with learning as a function of income 
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Figure 12: Simulation curve: learning on node D with income 

This simulation curve shows us a significant drop in availability of around 7%, compared with 

6% in the first case above, at a time step of 17000. This fall in the availability curve has a 

negative effect on the revenue curve, as shown in the figure, but its value remains only slightly 

higher than in the first case. 

By learning about preventive maintenance, we can see that the modules studied have: 

 an availability of around 26%, compared with 24% in the case without learning 

(Case 1) 

 an average hourly income of 22%, compared with 21% in the same simulation (Case 

1).  

We therefore observe a 2% increase in availability compared with the simulation without 

learning. We also note that maintenance costs have risen compared to the (1st case), to reach a 

gain of 1% more than the gain in availability. 

4.1.3. Case 3: Simulation without availability-based learning:- 
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Figure 13: Bayesian multi-state model with performance indicators 

Our aim is to determine a preventive maintenance policy that does not require learning, and 

optimizes system availability as a function of transition parameters and maintenance costs. 
 

 

Figure 14: Simulation curve without Learning as a function of availability 

We can see from the unlearned results that the modules studied have a revenue of around 2220 

euros per time step and an availability of around 26%. 

4.1.4. Case 4: Simulation with learning on availability based preventive maintenance 

decision:- 

 

This simulation with learning gives us an availability of around 31% and an income of 2143 

euros. 
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Figure 15: Simulation curve: learning about preventive maintenance as a function of availability 

By learning about preventive maintenance, we can see that: 

- The system studied has an availability of around 31%, compared with 26% in the previous case 

without learning (3rd case). 

- With an hourly income of 2143 euros versus 2220 euros in the same case (3rd case). 

So a 5% increase in availability compared with the simulation without learning of the (3rd case). 

The results of the different simulation cases are summarized in the table below.  

Table 2: The results of the different simulation cases 

Simulation case Case 1 Case 2 Case 3 Case 4 

Income 2102 2234 2220 2143 

Availability 24 26 26 31 

 

Conclusion and outlook:- 

In this work, we have proposed a methodology for assessing the performance of PV systems 

under environmental constraints. A dynamic Bayesian model of the degradation process was 

built using experimental data and simulated under several scenarios with or without 

reinforcement learning, in order to propose maintenance policy configuration choices. Indicators 

such as availability, revenue, cost and production were integrated into the model to assess system 

performance and the cost associated with the choice of preventive maintenance policy adopted. 

The simulation study of our dynamic multi-state model of the PV system shows the evolution of 

the PV module degradation process, as well as the Markov graph, according to the choice of 

preventive maintenance policy adopted. 
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In addition, the simulation with reinforcement learning on preventive maintenance allowed us to 

observe that availability increases with income compared to the simulation without learning. A 

fairly substantial decrease in income was also observed, this is due to the increase in the 

availability of the system and may allow decision-makers not to exceed a certain threshold of 

availability at the expense of income. 

The results obtained prove that AI associated with our dynamic model contributes to decision 

support for decision makers in particular maintenance managers in choosing the appropriate 

maintenance policy for the PV system. 

The results obtained demonstrate that the AI associated with our dynamic model contributes to 

decision support for decision-makers, in particular maintenance managers, in choosing the 

appropriate maintenance policy for the PV system. 
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