A Holistic Approach to HPLC technique for addressing process impurities: review on Method Development, Optimization, and Validation

by Jana Publication & Research

Submission date: 27-Jan-2025 11:29AM (UTC+0600)

Submission ID: 2431390230

File name: IIAR-50014.docx (37.79K)

Word count: 3110
Character count: 21168

- 1 A Holistic Approach to HPLC technique for addressing process impurities: review on Method
- 2 Development, Optimization, and Validation.
- 3 Abstract
- 4 High-Performance Liquid Chromatography (HPLC) has become an indispensable analytical
- 5 tool in pharmaceutical, environmental, and food sciences due to its precision, sensitivity, and
- 6 versatility. A holistic approach to HPLC method development, optimization, and validation
- 7 ensures reliable and reproducible results while meeting regulatory requirements. This review
- 8 outlines the critical steps in HPLC method development, emphasizing the importance of
- 9 understanding analyte properties, selecting appropriate chromatographic conditions, and fine-
- 10 tuning parameters for optimal performance. Key aspects of method optimization, such as
- 11 mobile phase composition, column selection, flow rate, and pH, are discussed to enhance
- 12 resolution and reduce analysis time. Additionally, the article delves into the rigorous validation
- 13 process, which includes assessing accuracy, precision, specificity, linearity, and robustness in
- 14 compliance with International Council for Harmonisation (ICH) guidelines. By integrating
- 15 systematic method development, experimental optimization, and thorough validation, this
- 16 holistic framework ensures efficient and high-quality analytical methods, driving
- 17 advancements in research and quality assurance across various industries.

18 Keywords

- 19 High Performance Liquid Chromatography, genotoxic potential impurities, N-nitroso compounds
- 20 pharmaceutical chemistry, methodology formulation. procedural validation.

Background

21

- 22 High-Performance Liquid Chromatography (HPLC) is an advanced analytical methodology
- 23 extensively used for the identification, quantification, and characterization of contaminants in
- 24 complex matrices. It is critical in the pharmaceutical industry, where rigorous regulatory
- 25 standards mandate the precise detection of process-related impurities, degradation products,

contaminants (GTCs) to ensure pharmaceutical safety and therapeutic efficacy.
neworks like ICH M7 highlight the importance of controlling GTCs [3],
amines, which must be monitored at trace concentrations to minimize potential
zards and comply with international safety regulations.
to HPLC
nce Liquid Chromatography (HPLC) is a chromatographic technique that
ounds based on interactions with a stationary phase, influenced by factors like
nd structure [1]. It operates under high pressure, improving resolution and
omplex samples [2]. HPLC is widely used in pharmaceuticals, biotechnology,
environmental monitoring for its ability to provide high-throughput,
nd precise results.
cals, HPLC is essential for quantifying active ingredients, impurities, degradation
enotoxic contaminants (GTCs) [3]. The integration with mass spectrometry (LC-
ensitivity, enabling the detection of trace-level contaminants, ensuring drug
latory compliance. Innovations like core-shell and monolithic columns improve
iency, facilitating the analysis of complex samples while meeting regulatory
vercoming Analytical Obstacles: Perspectives and Strategies
HPLC in pharmaceutical and industrial quality control is constrained by a series
d technical challenges, including:
on Quantification and Profiling of Genotoxic Impurities (GTIs) in
al Compounds:
arities, which have the potential to induce DNA damage and are regarded as
ogens, must be detected at exceedingly low concentrations, often at sub-parts-

51	per-billion (ppb) levels [5]. Regulatory frameworks, such as ICH M7 [3], underscore the
52	imperative to utilize highly sensitive and precise analytical methodologies, such as HPLC, for
53	the detection and quantification of these impurities.
54	2.2 Advanced techniques for the dissection and examination of multifaceted sample
55	matrices.:
56	Advanced techniques for the dissection and examination of complex sample matrices using
57	High-Performance Liquid Chromatography (HPLC) include precise sample preparation methods
58	such as solid-phase extraction (SPE), which aids in isolating target analytes [1]. The application
59	of gradient elution enhances separation efficiency, particularly for complex samples containing
60	compounds with diverse polarities [2]. Coupling HPLC with highly sensitive detectors, such as
61	mass spectrometry (MS) or UV-Vis, ensures high specificity and sensitivity, which is crucial for
62	detecting trace impurities. The use of specialized columns and automated sample injection
63	systems further enhances resolution and reproducibility [4]. These innovations make HPLC a
64	powerful analytical tool in diverse industries.
65	The complexity of pharmaceutical products or drug substances can result in matrix effects that
66	hinder accurate detection of genotoxic impurities (GTIs). To effectively separate target
67	compounds from complex mixtures, advanced sample preparation techniques, such as solid-
68	phase extraction (SPE) and liquid-liquid extraction (LLE), are essential for isolating analytes of
69	interest [6,7].
70	2.3 Innovation Demands:
71	Identifying genotoxic impurities (GTIs) in pharmaceuticals requires advanced instruments, such
72	as High-Performance Liquid Chromatography (HPLC) coupled with Mass Spectrometry (LC-
73	MS) and Liquid Chromatography-High Resolution Mass Spectrometry (LC-HRMS), for precise
74	trace-level analysis. These technologies provide high resolution and accuracy, ensuring

75	compliance with regulatory standards like ICH M7 [3]. Automated sample preparation systems
76	enhance efficiency and minimize contamination risks [6,7].
77	3. Leading-edge methods for the quantification and characterization of genotoxic
78	impurities and nitrosamines in pharmaceutical drug substances.
79	Leading-edge methods for the quantification and characterization of genotoxic impurities and
80	nitrosamines in pharmaceutical drug substances are critical for ensuring the safety and efficacy
81	of pharmaceutical products. Prominent examples include N-Nitroso dimethylamine (NDMA)
82	and N-Nitrosodiethylamine (NDEA) [11,12]. These methods often employ highly sensitive
83	techniques such as High-Performance Liquid Chromatography (HPLC) coupled with Mass
84	Spectrometry (MS), which provides exceptional resolution and specificity for detecting trace
85	levels of impurities. Additionally, advanced methods like Gas Chromatography-Mass
86	Spectrometry (GC-MS) and Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS)
87	are used to quantify these impurities with high precision [1]. The integration of automated
88	sample preparation techniques, such as solid-phase extraction (SPE), further enhances efficiency
89	and accuracy, minimizing contamination and variability [6,7]. These state-of-the-art approaches
90	are crucial for meeting stringent regulatory guidelines, such as those outlined in ICH M7 [3], and
91	for ensuring the safe use of pharmaceutical products by detecting harmful impurities at levels
92	that could pose risks to human health [5].
93	4. Analytical Technique Design:
94	HPLC Analytical technique design focuses on developing efficient methods to achieve accurate
95	separation, detection, and quantification of target compounds in complex samples.
96	4.1 Column Suitability: Column suitability in HPLC is essential for achieving optimal
97	separation, resolution, and sensitivity of target analytes. The choice of column type of reversed-
98	phase, normal-phase, or ion-exchange depends on the chemical characteristics of the compounds
99	being analyzed and the required chromatographic performance. Key factors such as particle size,

100	pore size, and column length are critical for efficient separation and reduced analysis time [1]. As
101	such, evaluating column suitability is a crucial step in ensuring the success of HPLC analyses,
102	particularly when dealing with complex sample matrices [2].
103	4.2 Mobile Phase Fine-tuning : Mobile phase fine-tuning in HPLC is vital for enhancing the
104	separation efficiency and resolution of analytes. By adjusting factors such as solvent
105	composition, pH, and ionic strength, analysts can enhance peak shape, reduce retention time, and
106	improve overall chromatographic performance [1]. Fine-tuning the mobile phase is particularly
107	important for complex mixtures, where slight adjustments can significantly impact sensitivity
108	and selectivity [2]. Therefore, careful optimization of the mobile phase is essential for achieving
109	high-quality analytical results.
110	4.3. Choice of Buffer: choice of buffer in chromatographic methods is critical for maintaining a
111	stable pH environment during analysis. The buffer's pH range should align with the ionization
112	requirements of the analyte for optimal separation. Buffer capacity must be sufficient to resist pH
113	fluctuations caused by sample injection or mobile phase changes. Compatibility with the mobile
114	phase is essential to avoid interference with analyte interactions. Common buffers such as
115	phosphate, acetate, and citrate are tailored to specific analyte properties and experimental
116	conditions [1].
117	4.4. pH optimization : pH optimization in chromatography is essential for ensuring proper
118	ionization of analytes, impacting their separation and retention. The correct pH enhances
119	resolution and minimizes peak tailing. It is crucial for achieving consistent and reproducible
120	results in chromatographic analysis. pH selection depends on the analyte properties and the
121	chromatography method used [1].
122	4.5. Contribution of organic modifiers: The contribution of organic modifiers in
123	chromatography is crucial for adjusting the polarity of the mobile phase, which impacts analyte
124	retention and separation. Organic solvents help enhance the solubility of hydrophobic

	23
125	compounds and improve peak shape. They also play a role in controlling the interaction between
126	analytes and the stationary phase, optimizing resolution [1].
127	4.6. Opting for Detectors in Chromatography: The selection of detectors in chromatography is
128	based on the analyte's chemical properties, sensitivity requirements, and the type of analysis.
129	Common detectors, such as UV/Vis, fluorescence, and refractive index detectors, vary in
130	selectivity and sensitivity. The detector's linear range and response time are critical for accurate
131	quantification, particularly in trace analysis. Compatibility with the mobile phase and sample
132	matrix ensures minimal interference and accurate results [1].
133	4.7. Preparation of Analytical Samples:
134	Sample preparation for HPLC and LC-MS/MS involves isolating the analyte from the sample
135	matrix using techniques like extraction or filtration. It may also include steps like dilution,
136	concentration, or derivatization to optimize analyte detection and ensure compatibility with the
137	chromatographic system. Proper sample preparation is essential for minimizing matrix
138	interference and improving sensitivity. These steps enhance the reliability and accuracy of results
139	in both techniques [1].
140	5. Validation of Analytical Techniques:
141	Validation in chromatography refers to the process of confirming that a particular analytical
142	method is suitable for its intended purpose. It involves a series of tests to ensure that the method
143	is accurate, precise, reliable, and reproducible. For pharmaceutical analyses, validation ensures
144	that the method consistently delivers results that meet regulatory requirements [16].
145	Key components of method validation in chromatography include:
146	Accuracy: The closeness of the measured value to the true value.
147	Precision : The reproducibility of results under the same conditions.
148	Specificity: The ability to measure the analyte in the presence of other substances in the sample.
149	Sensitivity: The method's ability to detect low concentrations of the analyte.

150	Linearity: The relationship between analyte concentration and detector response over a specified
151	range.
152	Range: The interval between the lowest and highest concentrations of analyte that can be
153	reliably measured.
154	Robustness: The method's ability to remain unaffected by small variations in operational
155	conditions (e.g., temperature, mobile phase composition).
156	Validation is an essential part of method development to ensure compliance with regulatory
157	standards such as those set by the FDA or ICH [16].
158	6. Refining HPLC methodologies for expandability in pharmaceutical and industrial
159	applications.
160	Refining HPLC methodologies for expandability is crucial for efficient and cost-effective
161	pharmaceutical and industrial production. As demands increase, HPLC methods must be optimized to
162	handle larger sample volumes, higher throughput, and diverse formulations without sacrificing
163	precision. Key improvements include developing robust, high-resolution columns, optimizing mobile
164	phases, and integrating automation for better productivity and reproducibility [8]. These methods
165	must also adapt to varying analytical challenges, from APIs to complex impurities [9]. By advancing
166	HPLC techniques for scalability, industries can meet growing demands while ensuring product
167	quality and regulatory compliance. Below are key areas of focus in optimizing HPLC for scalability:
168	6.1. Cost-Effectiveness and Sustainability: Scaling up HPLC methods requires focusing on
169	cost-effectiveness and sustainability. This includes using lower-cost reagents, optimizing solvent
170	use, and reducing waste. Methods that minimize sample preparation and energy consumption
171	also contribute to environmental and economic sustainability [10].
172	6.2. Operational Lifespan of Analytical Tools : The operational lifespan of analytical tools is
173	critical for ensuring consistent performance and minimizing maintenance, ensuring consistent
174	performance and minimizing maintenance costs in long-term applications [8].

175	6.3. Automation and High-Throughput Integration: Automation is key to meeting
176	pharmaceutical and industrial scalability demands, enhancing throughput and reducing manual
177	intervention. Automated injectors, sample preparation systems, and high-throughput HPLC
178	systems ensure consistent processing of larger sample volumes while maintaining analysis
179	integrity and improving workflow efficiency [8].
180	7. Monetary Considerations: The adoption of HPLC and LC-MS technologies presents
181	significant monetary considerations that extend beyond initial investment costs. While LC-MS
182	offers superior sensitivity and advanced analytical capabilities, it comes with higher operational,
183	maintenance, and data management expenses compared to HPLC. Careful cost-benefit analysis
184	is essential when selecting the appropriate technique, taking into account the specific needs of
185	the analysis, available budget, and long-term operational goals. By optimizing resource
186	allocation and operational efficiency, the financial impact of these technologies can be
187	effectively managed, ensuring their sustainable use in analytical applications.
188	Economic factors play a crucial role in the adoption of HPLC techniques. While the initial
189	investment in LC-MS systems is high, their sensitivity, specificity, and automation capabilities
190	provide significant long-term benefits [5].
191	7.1. Recurring Consumables : Recurring costs, including mobile phase solvents and the periodic
192	replacement of columns [10].
193	7.2. Automation : Streamlined Operations reduce manual intervention by automating tasks such
194	as sample injection, mobile phase delivery, and data processing in HPLC analysis [8].
195	Through streamlined operations, labour costs are minimized as processes like sample preparation
196	and data analysis become more efficient.
197	The implementation of streamlined operations enhances overall productivity, reducing both time
198	and resource consumption.

199 7.3. Abidance by Regulations: Abidance by regulatory standards ensures compliance with 200 established limits, thereby mitigating the risk of infringement of regulations [12,16]. 201 The organization's strict abidance by regulations reflects its commitment to maintaining high-202 quality standards. 203 8. Vision for the Future. 204 Emerging era of HPLC and LC-MS/MS in pharmaceuticals holds promising advancements, 205 particularly in drug development, quality control, and regulatory compliance. Enhanced 206 sensitivity and resolution in both technologies will allow for more accurate detection of 207 impurities and better quantification of drug compounds at lower concentrations, including 208 genotoxic impurities such as nitrosamines [11] ensuring higher safety standards [14]. Automation 209 and integration of these techniques will streamline workflows, increase throughput, and reduce 210 operational costs, making pharmaceutical testing more efficient and cost-effective. Moreover, the 211 incorporation of green chemistry practices, such as eco-friendly solvents and energy-efficient 212 systems, aligns with the growing demand for sustainability in pharmaceutical manufacturing 213 [13]. As both technologies evolve, they will continue to play a critical role in meeting stringent regulatory requirements and supporting the development of personalized medicine. The 214 215 increased accessibility and affordability of these technologies will democratize their use, 216 benefiting smaller labs and facilitating research and diagnostics across the pharmaceutical 217 industry. 218 **8.1. AI-driven Technology:** Artificial Intelligence is becoming more integral in HPLC to 219 improve analytical efficiency. Machine learning algorithms automatically adjust 220 chromatographic parameters like flow rate and gradient profiles for optimal performance. In 221 addition, AI-driven systems facilitate the interpretation of complex datasets, enhancing data 222 accuracy and accelerating the analysis process, which leads to better-informed decision-making 223 [15].

224	8.2. Compact HPLC Systems: Compact HPLC systems provide considerable benefits for on-
225	site quality control and fast impurity testing. Compact HPLC units allow for real-time analysis of
226	active pharmaceutical ingredients (APIs) and excipients directly at manufacturing facilities,
227	ensuring adherence to regulatory standards and enabling the swift identification of contaminants
228	[7].
229	8.3. State-of-the-art Detectors and Sampling Techniques: Innovative sampling methods,
230	including solid-phase microextraction (SPME) and needle-based devices, significantly improve
231	sensitivity, precision, and the range of applications in pharmaceutical analysis [1].
232	8.4. Sustainable Practices: The adoption of hydrogen as a mobile phase modifier and the
233	development of eco-friendly stationary phases align with green chemistry principles [8].
234	CONCLUSIONS
235	High-performance liquid chromatography (HPLC) is advancing to meet the growing challenges
236	of impurity analysis in the pharmaceutical industry, driven by innovations in automation,
237	miniaturization, and sustainability. The adoption of AI-driven analytics is revolutionizing data
238	interpretation, providing faster and more precise results while reducing human error.
239	Additionally, miniaturization improvements are making HPLC systems more accessible and
240	efficient, offering enhanced cost-effectiveness and ease of use. Sustainable approaches, such as
241	utilizing mobile phase modifiers and developing eco-friendly stationary phases, align with green
242	chemistry principles, fostering environmentally responsible practices. These advancements
243	further solidify HPLC's essential role in ensuring product quality, maintaining regulatory
244	compliance, and supporting environmental stewardship.
245	List of Abbreviations
246	HPLC: High Performance Liquid Chromatography
247	GTIs: Genotoxic Impurities
248	ICH: International Council for Harmonisation

249	LC-MS: Liquid Chromatography-Mass Spectrometry
250	Declarations
251	Acknowledgments:
252	I would like to acknowledge Dr B. Jainendra Kumar (Associate professor, Anurag University),
253	who guiding me in Ph. D work.
254	I would like to acknowledge Dr G. Sampath Kumar Reddy (Head- AR&D & Quality, Aurore
255	Life Sciences Private Limited), who encouraged and facilities to do research work.
256	I would like to acknowledge Mr J. Rajendar Rao (MD &CEO, Aurore Life Sciences Private
257	Limited), who providing facilities to do research work.
258	Endorsement for acknowledgment:
259	I have received the approval to acknowledge from all the persons mentioned in the
260	"Acknowledgements" section.
261	Endorsement for Publication:
262	All authors endorsement to publication.
263	Roles of the Authors:
264	P. Chandrashekhar Reddy collected and analysed the data and wrote the manuscript. He is the
265	lead author and showed strong commitment to the work. Dr. G Sampath Kumar Reddy has made
266	critical suggestions to the conception and substantively revised the work. Dr B. Jainendra Kumar
267	was the supporting pillar for writing manuscript and reviewed the work. All authors have read
268	and approved the manuscript.
269	Monetary Support
270	No Monetary Support
271	Data and Resource Accessibility
272	As no data sets were generated or analyzed in this study, data sharing is not relevant.
273	Consent and Ethical Authorization to Participate

274	Not applicable.			
275	Conflicts of Interest			
276	The authors proclaim no conflicts interests.			
277	Authors' details:			
278	1) Department of Chemistry, Anurag University, Hyderabad, India.			
279	2) Department of Analytical Research and Development, Aurore Life Sciences Private			
280	Limited, Hyderabad, India			
281	References:			
282	1. Snyder, L. R., Kirkland, J. J., & Dolan, J. W. (2010). Introduction to modern liquid			
283	chromatography (3rd ed.). Wiley.			
284	2. Lacher, S. K., & Schomburg, G. (2016). High-pressure liquid chromatography in analytical			
285	chemistry. In Springer handbook of enzyme technology (pp. 111-120). Springer.			
286	3. ICH Guidelines M7. (2018). Genotoxicity testing and risk assessment for pharmaceuticals.			
287	4. Dvorkin, L., & Nivens, D. E. (2015). Monolithic columns in HPLC: Innovations and applications.			
288	Journal of Chromatographic Science, 53(4), 481-487.			
289	https://doi.org/10.1093/chromsci/bmu234			
290	5. International Council for Harmonisation [ICH]. (2018). ICH M7: Genotoxicity testing and risk			
291	assessment for pharmaceuticals. Retrieved from			
292	https://database.ich.org/sites/default/files/M7_R1_Guideline.pdf			
293	6. Yang, L., & Zhang, X. (2020). Recent advances in solid-phase extraction techniques for			
294	pharmaceutical analysis. Analytica Chimica Acta, 1130, 135-145.			
295	https://doi.org/10.1016/j.aca.2020.01.029.			
296	7. Tse, R. E., & D'Agostino, L. A. (2019). Liquid-liquid extraction: Techniques and applications in			
297	analytical chemistry. Journal of Chromatography A, 1601, 86-100.			
298	https://doi.org/10.1016/j.chroma.2019.01.029.			

299 8. Zhang, Y., et al. (2024). Operator-free HPLC automated method development guided by Bayesian 300 optimization algorithms. Digital Discovery, 3(8), 1591-1601. 301 https://doi.org/10.1039/D4DD00062E. 302 9. Hites, R. A. (2017). Elements of environmental chemistry (2nd ed.). Wiley. 303 10. Alexander, A. J.; Waeghe, T. J.; Himes, K. W.; Tomasella, F. P.; Hooker, T. F. Modifying 304 Conventional High-Performance Liquid Chromatography Systems to Achieve Fast Separations 305 with Fused-Core Columns: A Case Study. J. Chromatogr. A 2021, 1218, 5456–5469. 306 DOI: 10.1016/j.chroma.2011.06.026. 307 11. Patocka, J., & Kuca, K. (2018). Genotoxic impurities and nitrosamines in pharmaceutical drug 308 substances: N-Nitroso dimethylamine (NDMA) and N-Nitrosodiethylamine (NDEA). 309 Environmental Toxicology and Pharmacology, 62, 1-10. 310 https://doi.org/10.1016/j.etap.2018.02.006. 311 12. European Medicines Agency [EMA]. (2020). Questions and answers on nitrosamines as 312 impurities in human medicinal products. https://www.ema.europa.eu. 313 13. Patocka, J., & Kuca, K. (2018). Advances in analytical techniques for the detection of genotoxic 314 impurities in drug substances. Environmental Toxicology and Pharmacology, 59, 33-40. 315 https://doi.org/10.1016/j.etap.2017.11.009. 316 14. Singh, S. P., & Kaur, G. (2020). Recent advances in HPLC and LC-MS for pharmaceutical 317 analysis. Journal of Pharmaceutical and Biomedical Analysis, 178, 112900. 318 https://doi.org/10.1016/j.jpba.2019.112900. 319 15. Singh, Y. R., Shah, D. B., Maheshwari, D. G., Shah, J. S., & Shah, S. (2023). Advances in AI-320 Driven Retention Prediction for Different Chromatographic Techniques: Unraveling the

Complexity. Critical Reviews in Analytical Chemistry, 54(8), 3559–3569.

16. International Conference on Harmonisation (ICH) (2005). Validation of Analytical Procedures:

https://doi.org/10.1080/10408347.2023.2254379.

Text and Methodology Q2(R1).

321

322

323

324

A Holistic Approach to HPLC technique for addressing process impurities: review on Method Development, Optimization, and Validation

Opt	imization,	and Validation			
ORIGIN	ALITY REPORT				
1 SIMIL	3% ARITY INDEX	7 % INTERNET SOURCES	9% PUBLICATIONS	4% STUDENT PAI	PERS
PRIMAR	RY SOURCES				
1	Anthrap emergin review a	Paul, Mable Baker, Krishnakumang class of oral and article", Future Joceutical Science	ar K. "NOACs: anticoagulants ournal of		1%
2	worldwi Internet Sour	descience.org			1 %
3	Dolan. "	Snyder, Joseph Introduction to tography", Wile	Modern Liqui		1%
4	Submitt Student Pape	ed to University	of Western C	Ontario	1%
5	Submitt Technolog Student Pape		iversity of Sci	ence and	1 %
	Amit G I	Varkar Vach Dat	il "A comproh	noncivo	

Amit G Nerkar, Yash Patil. "A comprehensive review of analytical strategies for validating

1%

RP-HPLC methods of aceclofenac and
thiocolchicoside in bulk drug and
formulation", Current Trends in Pharmacy
and Pharmaceutical Chemistry, 2024
Publication

7	Tomasz Tuzimski, Joseph Sherma. "High Performance Liquid Chromatography in Pesticide Residue Analysis", CRC Press, 2015 Publication	1 %
8	Submitted to University of College Cork Student Paper	1 %
9	Izet M. Kapetanovic. "Analytical Chemistry Methods: Developments and Validation", Preclinical Development Handbook, 02/02/2008 Publication	1 %
10	Mu Naushad, Mohammad Rizwan Khan. "Ultra Performance Liquid Chromatography Mass Spectrometry - Evaluation and Applications in Food Analysis", CRC Press, 2019 Publication	<1%
11	cdn.cocodoc.com Internet Source	<1%
12	www.bioprocessonline.com Internet Source	<1%

13	Shanthamoorthy, Premy. "Analyzing Unique Detection in High-Throughput Metabolomics and Lipidomics Using Ion Mobility-Enhanced Mass Spectrometry.", University of Toronto (Canada), 2024 Publication	<1%
14	Submitted to University of Strathclyde Student Paper	<1%
15	40266301.fs1.hubspotusercontent-na1.net Internet Source	<1%
16	Navish Kataria, Vinod Kumar Garg, Changseok Han, Eldon R. Rene. "Microplastic Pollution - Occurrence, Health Risk and Challenges", CRC Press, 2025 Publication	<1%
17	Vadoud H. Niri. "Sampling free and particle- bound chemicals using solid-phase microextraction and needle trap device simultaneously", Journal of Separation Science, 04/2009	<1%
18	d.docksci.com Internet Source	<1%
19	monadlabtech.com Internet Source	<1%

20	Rodríguez-Mejía, Kelin Johana Cuero-Amu, Natalia Ardila-Chantré et al. "A New Methodology for Synthetic Peptides Purification and Counterion Exchange in One Step Using Solid-Phase Extraction Chromatography", Processes, 2024 Publication	< %
21	S.B. Wankhede, S.S. Chitlange, R.P. Bhole, S.S. Zambare. "A Simple and Sensitive HPTLC Method for Simultaneous Analysis of Thiocolchicoside and Ketoprofen in Combined Dose Tablet Formulation", Analytical Chemistry Letters, 2012 Publication	<1%
22	core.ac.uk Internet Source	<1%
23	currencymart.net Internet Source	<1%
24	ebin.pub Internet Source	<1%
25	preview.fishersci.co.uk Internet Source	<1%
26	www.researchgate.net Internet Source	<1%

Rafael Cardoso Rial. "AI in analytical chemistry: Advancements, challenges, and future directions", Talanta, 2024

<1%

Publication

Exclude quotes

On

Exclude matches

Off

Exclude bibliography On