15Nov 2017

BIOGAS PRODUCTION FROM ANAEROBIC DIGESTION-A SYSTEMATIC REVIEW.

  • Department of Chemical Engineering, Durban University of Technology, S4 Level 1 Steve Biko Campus, P.O. Box 1334, Durban, 4000, South Africa.
  • Department of Port and Shipping, Regional Maritime University, P.O. Box GP 1115, Accra, Ghana.
  • Abstract
  • Keywords
  • References
  • Cite This Article as
  • Corresponding Author

Biogas, a renewable source of energy has been the focus of research for the past decades. It is simple to produce and environmentally friendly. Due to the current increase in population, emission of greenhouse gases and the UN concern to achieve 100% renewable energy globally by 2050, the use of biogas for electricity and for combined heat and power is the surest way forward. Anaerobic digestion thus far has been the surest way to achieve in the production of this renewable energy. The process, however, involves the consortium of microorganisms to breakdown feedstocks such as food waste and agricultural biomass through a complex pathway to generate mainly the methane and carbon dioxide. Feedstocks utilized by researchers from the past decades include water hyacinth, wood chips, corn silage, food wastes, and sugarcane bagasse. Process parameters that influence the anaerobic digestion process include pH, temperature, organic loading rate, feedstock type, mixing, hydraulic retention time, and the carbon to nitrogen ratio. This paper reviews the scope of biogas production from the anaerobic digestion process and details the various parameters affecting the process.


  1. Abbasi, T., Tauseef, S., & Abbasi, S. (2012a). Anaerobic digestion for global warming control and energy generation?an overview. Ren & Sust Energy Rev, 16(5), 3228-3242.
  2. Abbasi, T., Tauseef, S. M., & Abbasi, S. A. (2012b). A Brief History of Anaerobic Digestion and ?Biogas?. 11-23. doi:10.1007/978-1-4614-1040-9_2
  3. Allen, S. G., Schulman, D., & Lichwa, J. (2001). Acomparison between hot water and steam fractionation of corn fiber. Ind & Eng Chemistry Res, 40, 2934-2941.
  4. Alvira, P., Tom?s-Pej?, E., Ballesteros, M., & Negro, M. (2010). Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Biores technol, 101(13), 4851-4861.
  5. Angima, S. (2013). Master Composting Program. Retrieved from https://scholar.google.co.za/scholar?cluster=17329579830995070534&hl=en&as_sdt=0,5&sciodt=0,5
  6. Badgujar, K. C., & Bhanage, M. B. (2015). Factors governing dissolution process of lignocellulosic biomass in ionic liquid: Current status, overview and challenges. Biores technol, 178, 2-18.
  7. Bardiya, N., Somayaji, D., & Khanna, S. (1996). Biomethanation of banana peel and pineapple waste. Biores technol, 58(1), 73-76.
  8. Biarnes, M. (2017). Biomass to Biogas-Anaerobic Digestion. Retrieved from http://www.e-inst.com/biomass-to-biogas/
  9. Bj?rnsson, L. (2000). Intensification of the biogas process by improved process monitoring and biomass retention: Department of Biotechnology, Lund University.
  10. Bouallagui, H., Cheikh, B. R., Marouani, L., & Hamdi, M. (2003). Mesophilic biogas production from fruit and vegetable waste in a tubular digester. Biores technol, 86(1), 85-89.
  11. Braguglia, C., Gianico, A., & Mininni, G. (2011). Laboratory-scale ultrasound pre-treated digestion of sludge: heat and energy balance. Biores technol, 102(16), 7567-7573.
  12. Brandt, A., Gr?svik, J., Hallett, J. P., & Welton, T. (2013). Deconstruction of lignocellulosic biomass with ionic liquids. Green Chemistry, 15(3), 550-583.
  13. Budiyono, B., Syaichurrozi, I., & Sumardiono, S. (2013). Biogas production from bioethanol waste: the effect of pH and urea addition to biogas production rate. Waste Technol, 1(1), 1-5.
  14. Callaghan, F., Wase, D., Thayanithy, K., & Forster, C. (2002). Continuous co-digestion of cattle slurry with fruit and vegetable wastes and chicken manure. Biomass & Bioenergy, 1(22), 71-77.
  15. Chang, V. S., Kaar, W. E., Burr, B., & Holtzapple, M. T. (2001). Simultaneous saccharification and fermentation of lime-treated biomass. Biotechnol lett, 23(16), 1327-1333.
  16. Cheung, S. W., & Anderson, B. C. (1997). Laboratory investigation of ethanol production from municipal primary wastewater solids. Biores technol, 59(1), 81-96.
  17. Deepanraj, B., Sivasubramanian, V., & Jayaraj, S. (2014). Biogas Generation through Anaerobic Digestion Process-An Overview. Res J Chem & and Envt, 18(5), 1-14.
  18. Dhouib, A., Ellouz, M., Aloui, F., & Sayadi, S. (2006). Effect of bioaugmentation of activated sludge with white‐rot fungi on olive mill wastewater detoxification. Lett app. micro, 42(4), 405-411.
  19. Dobre, P., Nicolae, F., & Matei, F. (2014). Main factors affecting biogas production - an overview. Rom Biotechnol Lett, 19(3), 1-12.
  20. El-Mashad, H. M., & Zhang, R. (2010). Biogas production from co-digestion of dairy manure and food waste. Biores technol, 101(11), 4021-4028.
  21. Eliyan, C. (2007). Anaerobic digestion of municipal solid waste in thermophilic continuous operation. (Master of Science), Asian School of Technology.
  22. Esposito, G., Frunzo, L., Giordano, A., Liotta, F., Panico, A., & Pirozzi, F. (2012). Anaerobic co-digestion of organic wastes. Rev Env'tal Sci & and Bio/Technol, 11(4), 325-341.
  23. Fan, S., Zhang, P., Li, F., Jin, S., Wang, S., & Zhou, S. (2016). A Review of Lignocellulose Change During Hydrothermal Pretreatment for Bioenergy Production. C Organ Chem, 20, 1-11.
  24. Gomez, X., Cuetos, M., Cara, J., Mor?n, A., & Garcia, A. (2006). Anaerobic co-digestion of primary sludge and the fruit and vegetable fraction of the municipal solid wastes: conditions for mixing and evaluation of the organic loading rate. Ren energy, 31(12), 2017-2024.
  25. Hendriks, A., & Zeeman, G. (2009). Pretreatments to enhance the digestibility of lignocellulosic biomass. Biores technol, 100(1), 10-18.
  26. Ibrahim, M. H., Quaik, S., & Ismail, S. A. (2016). An Introduction to Anaerobic Digestion of Organic Wastes Prospects of Organic Waste Management and the Significance of Earthworms (pp. 23-44): Springer.
  27. Kaparaju, P., Buendia, I., Ellegaard, L., & Angelidakia, I. (2008). Effects of mixing on methane production during thermophilic anaerobic digestion of manure: lab-scale and pilot-scale studies. Biores technol, 99(11), 4919-4928.
  28. Khanal, S. K. (2008). Anaerobic biotechnology for bioenergy production principles and applications: Wiley-Blackwell, Singapore.
  29. Kim, J. K., Oh, B. R., Chun, Y. N., & Kim, S. W. (2006). Effects of temperature and hydraulic retention time on anaerobic digestion of food waste. J Bios & bioengin, 102(4), 328-332.
  30. Kızılkaya, R., & Bayraklı, B. (2005). Effects of N-enriched sewage sludge on soil enzyme activities. Applied Soil Ecology, 30(3), 192-202.
  31. Laser, M., Schulman, D., & Allen, S. G. (2002). A comparison of liquid hot water and steam pretreatments of sugarcane bagasse for conversion to ethanol. Biores Technol 81, 33-44.
  32. Liew, L. N., Shi, J., & Li, Y. (2012). Methane production from solid-state anaerobic digestion of lignocellulosic biomass. Biomass & Bioenergy, 46, 125-132.
  33. Liyakathali, N. M. A. (2013). Ultrasonic Pretreatment of Energy Cane Bagasse for Biofuel Production. (M.Sc.), Louisiana State University and Agricultural and Mechanical College.
  34. Lukehurst, C. T. (2009). Developing the use of digestate in the UK. Paper presented at the IEA Bioenergy Task 37 Seminar. https://www.google.co.za/search?site=&source=hp&q=the+use+of+digestate+in+the+UK&oq=the+use+of+digestate+in+the+UK&gs_l=psy-ab.3..0i22i30k1.914.8383.0.9588.30.25.0.0.0.0.592.5017.2-4j4j2j3.13.0....0...1.1.64.psy-ab..17.13.5007...0j0i131k1.dCLrvVGnpIk
  35. Maile, I., Muzenda, E., & Mbohwa, C. (2016). Biochemical methane potential of OFMSW for City of Johannesburg.
  36. Mata-Alvarez, J., Dosta, J., Romero-G?iza, M., Fonoll, X., Peces, M., & Astals, S. (2014). A critical review on anaerobic co-digestion achievements between 2010 and 2013. Ren & Sus Ener Rev, 36(C), 412-427.
  37. Mital, K. (1997). Biogas systems: policies, progress and prospects: Taylor & Francis.
  38. Monnet, F. (2003). An introduction to Anaerobic Digestion of Organic Wastes. Retrieved from
  39. Mood, S. H., Golfeshan, A. H., Tabatabaei, M., Jouzani, G. S., Najafi, G. H., Gholami, M., & Ardjmand, M. (2013). Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment. Ren & Sus Ener Rev, 27, 77-93.
  40. Muvhiiwa, R. F., Chafa, P. M., Chikowore, N., Chitsiga, T., Matambo, S. T., & Low, M. (2016). Effect of Temperature and PH on Biogas Production from Cow Dung and Dog Faeces. Afri J Onl, 45(4), 1-11.
  41. Nges, I. A. (2012). Anaerobic digestion of crop and waste biomass: Impact of feedstock characteristics on process performance. (Doctoral), Luund University (Media-Tryck).
  42. Nijaguna, B. T. (2012). Biogas Technology: New Age InternationalLimited Publishers, New Delhi.
  43. Ogbonda, K. H., Aminigo, R. E., & Abu, G. O. (2007). Influence of temperature and pH on biomass production and protein biosynthesis in a putative Spirulina sp. Bioresource technology, 98(11), 2207-2211.
  44. Ortega, L., Barrington, S., & Guiot, S. R. (2004). Anaerobic digestion of municipal solid waste: Development of a thermophilic inoculum. Paper presented at the 10th World Congress on Anaerobic Digestion, Montreal, Canada.
  45. Palmowski, L., & M?ller, J. (2000). Influence of the size reduction of organic waste on their anaerobic digestion. Wtr sci & technol, 41(3), 155-162.
  46. Patel, V., Desai, M., & Madamwar, D. (1993). Thermochemical pretreatment of water hyacinth for improved biomethanation. Appl Microb & Biotechnol, 42(1), 67-74.
  47. Perez, J. A., Gonzalez, A., & Oliva, J. M. (2007). Effect of process variables on liquid hot water pretreatment of wheat straw for bioconversion to fuel-etahnol in a batch reactor. J chem technol & biotechnol, 82, 929-938.
  48. Rao, P. V., Baral, S. S., Dey, R., & Mutnuri, S. (2010). Biogas generation potential by anaerobic digestion for sustainable energy development in India. Ren & Sus Ener Revi, 14(7), 2086-2094.
  49. Reddy, P. (2015). A critical review of ionic liquids for the pretreatment of lignocellulosic biomass. S Afr J Sci, 111(11/12), 1-9.
  50. Ribeiro, F. R., Passos, F., Gurgel, L. V. A., Ba?ta, B. E. L., & de Aquino, S. F. (2017). Anaerobic digestion of hemicellulose hydrolysate produced after hydrothermal pretreatment of sugarcane bagasse in UASB reactor. Sci Totl Envt, 584, 1108-1113.
  51. Rivard, C. J., & Boone, D. (1996). The anaerobic digestion process. Retrieved from
  52. Rivers, D. B., & Emert, G. H. (1987). Lignocellulosic pretreatment: a comparison of Wet and Dry ball attrition. Biotechnol lett, 9, 365-368.
  53. Saady, N. M. C., & Mass?, D. I. (2015). Impact of organic loading rate on psychrophilic anaerobic digestion of solid dairy manure. Energies, 8(3), 1990-2007.
  54. Simo, W. S. F., Jong, N. E., & Kapseu, C. (2016). Improving Biogas Production of Sugarcane Bagasse by Hydrothermal Pretreatment. Chem & Biomol Eng, 1(3), 21-25.
  55. S?derstr?m, J., Pilcher, L., Galbe, M., & Zacchi, G. (2002). Two-step steam pretreatment of softwood with SO2 impregnation for ethanol production. Appl biochem & biotechnol, 98(1-9), 5.
  56. Sreekrishnan, T., Kohli, S., & Rana, V. (2004). Enhancement of biogas production from solid substrates using different techniques??a review. Biores technol, 95(1), 1-10.
  57. Steffen, R., Szolar, O., & Braun, R. (1998). Feedstocks for anaerobic digestion. Institute of Agrobiotechnology Tulin, University of Agricultural Sciences, Vienna.
  58. Tawoma, N. (2015). Valorisation of biowaste via production of biogas and Biofertilizer. (Master of Science in Engineering), University of Kwazulu Natal.
  59. Vartak, D., Engler, C., Ricke, S., & McFarland, M. (1997). Organic loading rate and bioaugmentation effects in psychrophilic anaerobic digestion of dairy manure. Paper-American Society of Agricultural Engineers(974051).
  60. Verma, S. (2002). Anaerobic digestion of biodegradable organics in municipal solid wastes. (M.Sc. Thesis). Retrieved from https://scholar.google.co.za/scholar?q=anaerobic+digestion+of+biodegradable+organics+in+municipal+solid+wastes&hl=en&as_sdt=0&as_vis=1&oi=scholart&sa=X&ved=0ahUKEwiWrPWB7MHVAhWnDcAKHdl0DLQQgQMIJTAA
  61. Vorgelegt, V. (2017). Optimization of Anaerobic Digestion of Sugarcane Waste for Biogas Production in Brazil. (Doctor of Engineering), University of Rostock. Retrieved from https://www.auf.uni-rostock.de/fileadmin/uni-rostock/Alle_AUF/AUF/PDFs/Thesen/2017/Thesen_Leandro_Janke.pdf
  62. Wang, Q., Kuninobu, M., Kakimoto, K., Ogawa, H. I., & Kato, T. (1999). Upgrading of anaerobic digestion of waste activated sludge by ultrasonic pretreatment. Biores technol, 68(3), 309-313.
  63. Ward, A. J., Hobbs, P. J., Holliman, P. J., & Jones, D. L. (2008). Optimisation of the anaerobic digestion of agricultural resources. Biores technol, 99(17), 7928-7940.
  64. Xiao, W., & Clarkson, W. W. (1997). Acid solubilization of lignin and bioconversion of treated newsprint to methane. Biodegradation, 8, 61-66.
  65. Yoshida, M., Liu, Y., Uchida, S., Kawarada, K., Ukagami, Y., Ichinose, H., . . . Fukuda, K. (2008). Effects of cellulose crystallinity, hemicellulose, and lignin on the enzymatic hydrolysis of Miscanthus sinensis to monosaccharides. Biosci, biotechnol, & biochem, 72(3), 805-810.
  66. Zhang, Z.-P., Show, K.-Y., Tay, J.-H., Liang, D. T., Lee, D.-J., & Jiang, W.-J. (2006). Effect of hydraulic retention time on biohydrogen production and anaerobic microbial community. Proc Biochem, 41(10), 2118-2123.
  67. Zheng, Y., Lin, H. M., & Tsao, G. T. (1998). Pretreatment for cellulose hydrolysis by carbon dioxide explosion. Biotechnology Progress, 14, 890-896.
  68. Zhu, S. (2008). Perspective use of ionic liquids for the efficient utilization of lignocellulosic materials. J chem tech & biotechnol, 83, 777-779.

[Edward Kwaku Armah and Thomas Armah. (2017); BIOGAS PRODUCTION FROM ANAEROBIC DIGESTION-A SYSTEMATIC REVIEW. Int. J. of Adv. Res. 5 (Nov). 495-505] (ISSN 2320-5407). www.journalijar.com


Edward Kwaku Armah
Department of Chemical Engineering, Durban University of Technology, S4 Level 1Steve Biko Campus, P.O. Box 1334, Durban, 4000, South Africa.

DOI:


Article DOI: 10.21474/IJAR01/5795      
DOI URL: https://dx.doi.org/10.21474/IJAR01/5795