

RESEARCH ARTICLE

COMPARATION OF THEORETICAL PROPERTIES OF 3-METHYL-4-(3-BENZOXY-4-METHOXYBENZYLIDENAMINO)-4, 5-DIHYDRO-1*H*-1, 2, 4-TRIAZOL-5-ONE MOLECULE.

Gül Kotan¹, Şule Bahçeci², Nuri Yildirim³ and Haydar Yüksek⁴.

.....

- 1. Vocational School, Kafkas University, Kars, 36100, Turkey.
- 2. Fatih Education Faculty, Karadeniz Technical University, Trabzon, Turkey.
- 3. Department of Chemistry, Karadeniz Technical University, Trabzon, Turkey.
- 4. Department of Chemistry, Kafkas University, Kars, 36100, Turkey.

Manuscript Info

Manuscript History

Key words:-

.....

Received: 13 December 2017

Published: February 2018

mulliken charge, B3LYP, HF.

Final Accepted: 15 January 2018

GIAO, 631G (d,p) and 6311G(d,p),

Abstract

3-Methyl-4-(3-benzoxy-4-methoxybenzylidenamino)-4,5-dihydro-1H-1,2,4-triazol-5-one molecule was optimized by using the B3LYP/HF 631G(d,p) and B3LYP/HF 6311G(d,p) basis sets. This optimized structures used to calculation of the different theoretical properties of the compound. ¹H-NMR and ¹³C-NMR isotropic shift values were calculated by the method of GIAO using the program package Gaussian G09W. Experimental and theoretical values were inserted into the graphic according to equitation of $\delta \exp=a+b$. δ calc. The standard error values were found via SigmaPlot program with regression coefficient of **a** and **b** constants. The veda4f program was used in defining IR data. IR absorption frequencies were compared with experimental data. Infrared spectrums were composed by using the data calculated. Additionally, bond lengths, dipole moments, HOMO-LUMO energys, mulliken charges by using the B3LYP/HF 631G(d,p) and B3LYP/HF 6311G(d,p) basis sets of this compound were theoretically calculated. Finally, theoretical properties of the compound according to two different basis sets were compared.

.....

Copy Right, IJAR, 2018,. All rights reserved.

Introduction:-

Schiff base compounds are used as starting materials in the synthesis of important drugs, such as antibiotics and antiallergic, antiphlogistic, and antitumor substances (Barton & Ollis, 1979; Ingold, 1969; Layer, 1963). On the industrial scale, they have a wide range of applications, such as dyes and pigments (Taggi et.al., 2002). Schiff bases have also been employed as ligands for the complexation of metal ions (Aydoganet.al., 2001). Schiff bases are also becoming increasingly important in the dye and plastic industries as well as for the liquidecrystal technology and mechanistic investigation of drugs used in pharmacology, biochemistry and physiology (Casaszar et.al., 1985, Sheikhshoaie & Sharif, 2006).

.....

In the past years, by increasing development of computational chemistry, theoretically properties of Schiff bases were investigated. Quantum chemical calculation methods have widely been used to theoretically predict the structural, spectroscopic, thermodynamic and electronic properties of molecular systems. The quantum chemical calculation methods provide support for experimental structural and spectroscopic studies (Yüksek et.al., 2005a; Yüksek et.al., 2008a; Yüksek et.al., 2008b; Gökçe et.al., 2013; Gökçe et.al., 2014).

Experimental data of 3-methyl-4-(3-benzoxy-4-methoxybenzylidenamino)-4,5-dihydro-1*H*-1,2,4-triazol-5-one molecule was described in the literature (Bahçeci et.al., 2016).

In the present paper, theoretical values of compound were calculated theoretically on the computer. Molecule was optimized by using the B3LYP/HF 631G(d,p) and B3LYP/HF 6311G(d,p) basis sets (Frisch et al., 2009; Wolinski, Hilton & Pulay, 1990). Starting from this optimized structure with ¹H-NMR and ¹³C-NMR spectral data (Table 1) and IR spectral values according to GIAO (Wolinski et al., 1990) method was calculated using the method of Gaussian G09W program package in gas phase. Theoretically and experimentally values (Bahçeci et.al., 2016) were plotted according to exp =a +b. δ calc Eq. a and b constants regression coefficients with a standard error values were found using the SigmaPlot program (Table 2). The correlation graphs for chemical shifts drawn with ¹H-NMR, ¹³C-NMR and ¹H-NMR(DMSO), ¹³C-NMR(DMSO) spectral data of the molecule (Fig. 3). Theoretically calculated IR data are multiplied with appropriate adjustment factors (Merrick et.al., 2007) and the data obtained according to HF and DFT method are formed using theoretical infrared spectrum (Fig. 4, 5). The identification of calculated IR data was used in veda4f program (Jamróz, 2004) (Table 3). Additionally, bond lengths (Table 4), mulliken charges (Mulliken, 1955) (Table 5), the HOMO(the highest occupied molecular orbitals)-LUMO(lowest unoccupied molecular orbitals) energy (Fig. 5, 6) and dipole moments (Table 6) of this compound was found by using two basis sets.

Figure 1:- Chemical formula of compound

Methods:-

The quantum chemical calculations were carried out with Density Functional Theory (DFT) and Hartree-Fock (HF) methods using 631G(d,p) and 6311G (d,p) basis set at the Gaussian 09W program package on a computing system (Frisch et al., 2009). Firstly, the compound was optimized by using the B3LYP/HF 631G(d,p) and B3LYP/HF 6311G(d,p) basis sets (Frisch et al., 2009; Wolinski, Hilton & Pulay, 1990). Thus, the most stable geometrical comformer of compoundwas obtained. Then, ¹H-NMR and ¹³C-NMR isotropic shift values were calculated with method of GIAO (Wolinski et al., 1990). The veda4f program was used in defining IR data (Jamróz, 2004). Otherwise, bond lengths, dipole moments, the HOMO-LUMO energy, and mulliken charges (Mulliken, 1955) of compound were calculated theoretically on the computer. Theoretical properties of the compound according to two different basis sets were compared.

Theoretical Calculations:-

Figure 2:- The optimized structure of the molecule with DFT/B3LYP/631G(d,p) (1) and DFT/B3LYP/6311G(d,p) (2) levels

No	Exp.	B3LYP 631G	B3LYP 6311G	Differ. B3LYP 631G	Differ. B3LYP 6311G	HF631G	HF631G	Differ. HF631G	Differ. HF 6311G
C1	144.73	150,21	167,65	-5,48	-22,92	145,35	159,01	-0,62	-14,28
C2	151.75	152,93	171,12	-1,18	-19,37	146,61	160,48	5,14	-8,73
C3	153.21	154,04	169,98	-0,83	-16,77	149,16	161,98	4,05	-8,77
C4	126.93	132,34	148,86	-5,41	-21,93	119,97	132,70	6,96	-5,77
C5	121.42	119,70	135,69	1,72	-14,27	119,35	132,74	2,07	-11,32
C6	140.25	149,20	168,43	-8,95	-28,18	132,22	146,77	8,03	-6,52
C7	154.01	154,78	177,10	-0,77	-23,09	149,66	164,23	4,35	-10,22
C8	113.20	116,34	132,34	-3,14	-19,14	105,68	117,28	7,52	-4,08
С9	128.72	134,40	151,54	-5,68	-22,82	131,71	145,16	-2,99	-16,44
C10	164.39	170,95	189,63	-6,56	-25,24	157,13	170,48	7,26	-6,09
C11	130.13	134,83	151,17	-4,70	-21,04	123,04	135,96	7,09	-5,83
C12	130.33	132,19	154,55	-1,86	-24,22	129,48	143,58	0,85	-13,25
C13	129.46	130,38	150,53	-0,92	-21,07	122,67	136,76	6,79	-7,30
C14	134.59	136,22	156,22	-1,63	-21,63	133,00	147,48	1,59	-12,89
C15	129.46	132,05	149,67	-2,59	-20,21	122,78	136,90	6,68	-7,44
C16	130.33	135,65	151,51	-5,32	-21,18	130,37	144,03	-0,04	-13,70
C17	56.93	61,07	73,18	-4,14	-16,25	46,25	54,59	10,68	2,34
C18	11.53	20,84	29,86	-9,31	-18,33	10,40	18,37	1,13	-6,84
H19	11.80	8,45	7,93	3,35	3,87	7,62	7,18	4,18	4,62
H20	9.65	11,02	10,61	-1,37	-0,96	10,27	10,06	-0,62	-0,41
H21	7.76	9,09	8,21	-1,33	-0,45	8,90	8,76	-1,14	-1,00
H22	7.28	7,69	7,72	-0,41	-0,44	7,60	7,33	-0,32	-0,05
H23	7.74	8,14	7,96	-0,40	-0,22	8,32	8,19	-0,58	-0,45
H24	8.13	8,50	8,96	-0,37	-0,83	9,15	9,01	-1,02	-0,88
H25	7.60	8,15	8,38	-0,55	-0,78	8,22	8,08	-0,62	-0,48
H26	7.61	8,51	8,40	-0,90	-0,79	8,54	8,40	-0,93	-0,79
H27	7.72	8,52	8,10	-0,80	-0,38	8,23	8,09	-0,51	-0,37
H28	8.13	9,05	8,39	-0,92	-0,26	9,10	8,91	-0,97	-0,78
H29	3.83	4,17	4,69	-0,34	-0,86	4,31	3,65	-0,48	0,18
H30	3.83	4,80	5,05	-0,97	-1,22	3,84	4,08	-0,01	-0,25
H31	3.83	4,49	4,50	-0,66	-0,67	4,02	3,86	-0,19	-0,03
H32	2.24	3,32	3,02	-1,08	-0,78	2,71	2,66	-0,47	-0,42
H33	2.24	3,33	2,96	-1,09	-0,72	2,75	2,62	-0,51	-0,38
H34	2.24	2,95	2,72	-0,71	-0,48	2,43	2,39	-0,19	-0,15

Table 1:- The calculated and experimental ¹³C and ¹H-NMR DMSO(B3LYP/HF 631G(d,p)/6311G(d,p)) isotropic chemical shifts of the molecule (δ /ppm)

The relation between R² values of the compound:-

The optimized R² values of the compound with B3LYP/HF 631G(1) level:-

B3LYP/631G(d,p) (DMSO): ¹³C: 0.9934, ¹H: 0.8617; HF/631G(d,p) (DMSO): ¹³C: 0.9898, ¹H: 0.8220.

The optimized R² values of the compound with B3LYP/HF 6311G(2) level:-

B3LYP/6311G(d,p) (DMSO): ¹³C: 0.9936, ¹H: 0.8437; HF/6311G(d,p) (DMSO): ¹³C: 0.9885, ¹H: 0.8009.

There is such a relationship between R²-values of the compound. Found standard error rate and a, b constants regression values were calculated according to formuleexp =a +b. δ calc Eq. These values for compound were shown in the table **2**. Theoretical and experimental carbon and proton chemical shifts ratios between acording to a, b ve R² values, lineer a correlation were observed.

^{13}C (DMSO)					¹ H(DMSO)				
	2	\mathbf{R}^2	S. error	а	b	\mathbf{R}^2	S. error	a	b
	DFT/631G	0.9934	2.9357	1.0244	-6.8507	0.8617	1.1174	1.0485	0.8687
	HF/631G	0.9898	3.7732	0.9869	5.8241	0.8220	1.2678	0.9617	0.0200
¹³ C (DMSO)					¹ H(DMSO)				
	2	\mathbf{R}^2	S. error	a	b	\mathbf{R}^2	S. error	a	b
	DET/(3110	0.0026	2 0000	0.0547	14 260	0 9427	1 1990	1.0751	0 8786
	DF1/0311G	0.9930	2.9800	0.9347	-14.309	0.0457	1.1000	1.0751	0.0700

Table 2:-The correlation data for chemical shifts of the molecule

Figure 3:- The correlation graphs for B3LYP/HF 631G(d,p)/6311G(d,p) chemical shifts of the molecule

The vibration frequency of the compound:-

Theoretically IR values were calculation veda 4f programme and scala values were obtain. Theoretically calculated IR data are multiplied with appropriate adjustment factors respectively 0.9617, 0.8992, 0.9688, 0.9059 for DFT/631G(d,p), HF/631G(d,p) and DFT/6311G(d,p), HF/6311G(d,p) basis sets. The negative frequency in the data was not found. This result, structure of compound were shown stable. IR spectrums were drawn with obtained values according to HF and DFT method. Theoretically IR values were compare with experimentally IR values. The result of this compare were found corresponding with each other of values. Experimentally carbonyl peak (C=O) in 1704, 1730 cm⁻¹ and theoretically (C=O) peak in 1768 cm⁻¹ for 631G(d,p), 1762 cm⁻¹ for 6311G(d,p) were observed.

Vibration Types (1)	Experimental	Skalalı dft(1)	Skalalı hf(1)	Skalalı dft(2)	Skalalı hf(2)
τ HCCC(16)	700	692	724	682	684
τ HCCC(11)	771	779	809	797	826
τ HCOC(27)	1262	1268	1277	1179	1197
v NC(54)	1603	1591	1625	1613	1710
v OC(90)	1730, 1704	1768	1809	1762	1809
v NH(100)	3172	3557	3556	3566	3561

 Table 3:-The calculated frequencies values of the molecule optimized with 1 and 2 levels

Figure 4:-Experimental (a) and theoretical IR spectrums and simulated with DFT/B3LYP/631G(d,p) (b) and HF/B3LYP/631G(d,p) (c) levels of the molecule.

Figure 5:-Theoretical IR spectrums and simulated with DFT/B3LYP/6311G(d,p) (d) and HF/B3LYP/6311G(d,p) (e) levels of the molecule

Table	Table 4: The calculated bond lengths B3LYP/HF 631G(d,p) and B3LYP/HF 631IG(d,p) of the molecule.									
	Bond Lengths	DFT/631G	HF/631G	DFT/6311G	HF/6311G					
1	C(1)-N(35)	1.300	1.269	1.296	1.266					
2	C(1)-N(37)	1.388	1.378	1.388	1.378					
3	C(1)-C(18)	1.486	1.488	1.485	1.487					
4	N(35)-N(36)	1.382	1.371	1.380	1.370					
5	N(36)-H(19)	1.006	0.990	1.005	0.990					
6	N(36)-C(2)	1.370	1.346	1.368	1.346					
7	C(2)-O(39)	1.223	1.203	1.216	1.196					
8	C(2)-N(37)	1.417	1.385	1.419	1.387					
9	N(37)-N(38)	1.373	1.367	1.370	1.365					
10	N(38)-C(3)	1.290	1.260	1.285	1.258					
11	C(3)-H(20)	1.088	1.075	1.086	1.075					
12	C(3)-C(4)	1.461	1.470	1.461	1.471					
13	C(4)-C(5)	1.408	1.399	1.406	1.399					
14	C(4)-C(9)	1.399	1.380	1.395	1.378					
15	C(5)-H(21)	1.083	1.072	1.082	1.072					
16	C(5)-C(6)	1.382	1.364	1.379	1.362					
17	C(6)-O(40)	1.382	1.375	1.380	1.374					
18	C(6)-C(7)	1.415	1.401	1.413	1.401					
19	C(7)-O(41)	1.356	1.337	1.355	1.335					
20	C(7)-C(8)	1.396	1.381	1.394	1.380					
21	C(8)-H(22)	1.083	1.072	1.081	1.071					
22	C(8)-C(9)	1.395	1.390	1.393	1.390					
23	C(9)-H(23)	1.086	1.076	1.084	1.075					
24	O(40)-C(10)	1.386	1.341	1.388	1.340					
25	C(10)-O(42)	1.204	1.185	1.197	1.178					
26	C(10)-C(11)	1.493	1.488	1.491	1.489					
27	C(11)-C(12)	1.401	1.389	1.399	1.388					
28	C(11)-C(16)	1.402	1.390	1.399	1.389					
29	C(12)-H(24)	1.083	1.072	1.082	1.072					
30	C(12)-C(13)	1.394	1.384	1.389	1.383					
31	C(13)-H(25)	1.085	1.075	1.083	1.074					
32	C(13)-C(14)	1.395	1.384	1.394	1.384					
33	C(14)-H(26)	1.086	1.075	1.084	1.075					
34	C(14)-C(15)	1.397	1.386	1.393	1.386					
35	C(15)-H(27)	1.085	1.075	1.083	1.074					
36	C(15)-C(16)	1.391	1.382	1.391	1.381					
37	C(16)-H(28)	1.084	1.073	1.082	1.073					

Table 4:-The calculated bond lengths B3LYP/HF 631G(d,p) and B3LYP/HF 6311G(d,p) of the molecule.

38	C(7)-O(41)	1.356	1.337	1.355	1.335
39	O(41)-C(17)	1.422	1.402	1.423	1.402
40	C(17)-H(29)	1.096	1.085	1.095	1.079
41	C(17)-H(30)	1.089	1.084	1.088	1.085
42	C(17)-H(31)	1.096	1.079	1.094	1.085
43	C(18)-H(32)	1.094	1.083	1.092	1.083
44	C(18)-H(33)	1.094	1.083	1.092	1.083
45	C(18)-H(34)	1.090	1.080	1.089	1.080

E_{HOMO} (B3LYP) : -0.21409 Hatree

E_{HOMO} (HF) : -0.30218 Hatree

 $\begin{array}{ll} E_{LUMO}\left(B3LYP\right): -0.05666 \text{ Hatree} & E_{LUMO}\left(HF\right): 0.09319 \text{ Hatree} \\ \textbf{Figure 6:-HOMO-LUMO energy calculated with DFT/B3LYP/631G(d,p) and HF/B3LYP/631G(d,p) levels of the molecule.} \end{array}$

E_{LUMO} (B3LYP) : -0.06669 Hatree E_{LUMO} (HF) : 0.08729 Hatree **Figure 7:-**HOMO-LUMO energy calculated with DFT/B3LYP/6311G(d,p) and HF/B3LYP/6311G(d,p)levels of the molecule

I able et	the calculated manifold enarges datas D5D117/11 0510(d,p)/ 05110(d,p)/ 05110(d,p)/										
	DFT	HF		DFT	HF		DFT	HF		DFT	HF
	631G	631G		631G	631G		6311G	6311G		6311G	6311G
C1	0.522	0.592	H22	0.098	0.167	C1	0.294	0.396	H22	0.111	0.115
C2	0.816	1.051	H23	0.100	0.171	C2	0.535	0.729	H23	0.098	0.101
C3	0.111	0.187	H24	0.106	0.190	C3	0.135	0.245	H24	0.111	0.119
C4	0.081	-0.106	H25	0.096	0.157	C4	-0.169	-0.199	H25	0.103	0.104
C5	-0.144	-0.111	H26	0.094	0.158	C5	0.016	-0.015	H26	0.103	0.105
C6	0.284	0.341	H27	0.095	0.158	C6	0.098	0.250	H27	0.099	0.105
C7	0.370	0.430	H28	0.116	0.196	C7	0.198	0.291	H28	0.124	0.124
C8	-0.142	-0.217	H29	0.121	0.117	C8	-0.120	-0.130	H29	0.114	0.119
C9	-0.136	-0.137	H30	0.137	0.126	C9	-0.050	-0.063	H30	0.138	0.100
C10	0.556	0.862	H31	0.121	0.148	C10	0.387	0.697	H31	0.120	0.091
C11	0.034	-0.191	H32	0.144	0.160	C11	-0.213	-0.293	H32	0.132	0.122
C12	-0.096	-0.102	H33	0.141	0.154	C12	-0.023	-0.034	H33	0.133	0.124
C13	-0.095	-0.165	H34	0.141	0.156	C13	-0.098	-0.092	H34	0.136	0.127
C14	-0.075	-0.128	N35	-0.335	-0.567	C14	-0.071	-0.077	N35	-0.220	-0.286
C15	-0.096	-0.164	N36	-0.435	-0.352	C15	-0.105	-0.091	N36	-0.312	-0.380
C16	-0.088	-0.105	N37	-0.411	-0.618	C16	-0.021	-0.035	N37	-0.365	-0.469
C17	-0.084	-0.034	N38	-0.327	-0.334	C17	-0.138	-0.031	N38	-0.215	-0.277
C18	-0.360	-0.359	039	-0.542	-0.659	C18	-0.244	-0.182	039	-0.392	-0.532
C19	0.288	0.339	O4 0	-0.528	-0.710	C19	0.250	0.259	O4 0	-0.322	-0.503
C20	0.157	0.227	041	-0.524	-0.662	C20	0.140	0.164	041	-0.277	-0.446
H21	0.121	0.197	042	-0.432	-0.562	H21	0.117	0.116	042	-0.338	-0.466

Table 5:-The calculated mulliken charges datas B3LYP/HF 631G(d,p)/ 6311G(d,p) of the molecule

Table 6:-The calculated di	pole moments datas	s B3LYP/HF 631G(d n	$\frac{1}{6311}$ G(d p)	of the molecule
	pole moments data	s D S 	// 05110(u,p)	of the molecule

	DFT/631G	DFT/6311G	HF/631G	HF/6311G
μ _x	-0.9451	-0.9097	-1.6273	-1.6055
μ _y	4.1544	4.1733	5.9378	5.8610
μ _z	-0.1641	-0.1783	0.3787	0.2856
μ_{Toplam}	4.2637	4.2750	6.1684	6.0836

Results and Discussion:-

In this work, geometrical parameters and spectroscopic parameters such as IR, ¹H-NMR and ¹³C-NMR spectra of molecule are calculated by Density Functional Theory (DFT) and Hartree-Fock (HF) methods with the 631G(d,p) and 6311G(d,p) two different basis sets. Obtained spectroscopic parameters are compared with experimental data. Furthermore, calculated theoretical data with the 631G(d,p) and 6311G(d,p) basis sets are compared with each other. The chemical shifts in the calculations ¹H-NMR and ¹³C-NMR and IR vibrational frequencies are found to be compatible with the experimental data. Theoretical and experimental carbon and proton chemical shifts ratios between acording to a, b ve R² values, lineer a correlation were observed.

Furthermore, IR vibrational frequencies experimentally carbonyl peak (C=O) in 1706 cm⁻¹ and theoretically (C=O) peak in 1768 cm⁻¹ for 631G(d,p), 1762 cm⁻¹ for 6311G(d,p) were observed. The negative frequency in the IR data was not found. This result, structure of compound were shown stable. In addition, bond lengths, dipole moments, the HOMO-LUMO energy and mulliken charges are calculated theoretically by using the B3LYP/HF 631G(d,p) and 6311G(d,p) basis sets.

References:-

- 1. Aydogan, F., Ocal, N., Turgut, Z., Yolaçan, C. (2001): Bull. Korean Chem. Soc. 22 476480.
- 2. Barton, D. Ollis, W.D. (1979): Comprehensive Organic Chemistry, vol. 2, Oxford:Pergamon.
- 3. Bahçeci, Ş., Yıldırım, N., Gürsoy-Kol, Ö., Beytur, M. & Yüksek, H. (2016): Synthesis and Antioxidant Properties of Some [2-Methoxy-5-(3-alkyl-4,5-dihydro-1*H*-1,2,4-triazol-5-one-4-yl)-azomethinphenyl benzoates, Der Pharma Chemica, 8 (15). 243-248.
- 4. Casaszar, J., Morvay, J., Herczeg, O., Acta Phys. Chem. 31 (1985): 717722.
- Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J.A., Jr.Vreven, T., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, L.R., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels A.D., Farkas, O., Foresman, J.B., Ortiz, J.V., Cioslowski, J., & Fox, D.J. (2009): Gaussian Inc., Wallingford, CT.
- Gökçe, H., Bahçeli, S., Akyıldırım, O., Yüksek, H. and Gürsoy-Kol, Ö. (2013): The Syntheses, Molecular Structures, Spectroscopic Properties (IR, Micro–Raman, NMR and UV–vis) and DFT Calculations of Antioxidant 3-alkyl-4-[3-methoxy-4-(4-methylbenzoxy)benzylidenamino]-4,5-dihydro-1*H*-1,2,4-triazol-5-one Molecules Letters in Organic Chemistry 10 (6): 395-441.
- Gökçe, H., Akyıldırım, O., Bahçeli, S., Yüksek, H. and Gürsoy-Kol, Ö. (2014): The 1-acetyl-3-methyl-4-[3-methoxy-4-(4-methylbenzoxy)benzylidenamino]-4,5-dihydro-1*H*-1,2,4-triazol-5-one Molecule Investigated by a Joint Spectroscopic and Quantum Chemical Calculations Journal of Molecular StructureDOI: http://dx.doi.org/10.1016/j.molstruc.2013.10.044, 1056-1057: 273-284.
- 8. Ingold, C.K. (1969): Structure and Mechanism in Organic Chemistry, second ed.
- 9. Jamróz, M.H. (2004): Vibrational Energy Distribution Analysis: VEDA 4 program, Warsaw.
- 10. Layer, R.W. (1963): Chem. Rev. 63 489510.
- 11. Mulliken, R.S.(1955): Electronic Population Analysis on LCAO-MO Molecular Wave Functions, Journal of Chemical Physics, 23, 1833–1840.
- 12. Merrick, J.P., Moran, D., Radom, L. (2007): An Evaluation of Harmonic Vibrational Frequency Scale Factors. Journal of Physical Chemistry, 111 (45), 11683-11700.
- 13. Sheikhshoaie, I., Sharif, M.A. (2006): ActaCrystallogr. E 62 35633565.
- 14. Taggi, A.E., Hafez, A.M., Wack, H., Young, B., Ferraris, D., Lectka, T. J. (2002): Am. Chem.Soc. 124 66266635.
- 15. Wolinski, K., Hilton, J.F. and Pulay, P.J. (1990): Am. Chem. Soc., 112, 512.
- Yüksek, H., Çakmak, İ., Sadi, S., Alkan, M. and Baykara, H. (2005): Synthesis and GIAO NMR Calculations for Some Novel 4-Heteroarylidenamino-4,5-dihydro-1*H*-1,2,4-triazol-5-one Derivatives: Comparison of Theoretical and Experimental ¹H and ¹³C Chemical Shifts Int. J. Mol. Sci 6 219-229.
- Yüksek, H., Gürsoy, Ö., Çakmak, İ. and Alkan, M. (2005): Synthesis and GIAO NMR Calculation for Some New 4,5-Dihydro-1*H*-1,2,4-triazol-5-one Derivatives: Comparison of Theoretical and Experimental ¹H and ¹³C Chemical Shifts *Magn*. Reson. Chem.43 585-587.
- Yüksek, H., Alkan, M., Bahçeci, Ş., Çakmak, İ., Ocak, Z., Baykara, H., Aktaş, Ö. And Ağyel, E. (2008): Synthesis, Determination of pKa Values and GIAO NMR Calculations of Some New 3-Alkyl-4-(pmethoxybenzoylamino)-4,5-dihydro-1*H*-1,2,4-triazol-5-ones J. Mol. Struc 873 142-148.
- Yüksek, H., Alkan, M., Çakmak, İ., Ocak, Z., Bahçeci, Ş., Calapoğlu, M., Elmastaş, M., Kolomuç, A. and Aksu, H. (2008): Preparation, GIAO NMR calculations and acidic properties of some novel 4,5-dihydro-1*H*-1,2,4-triazol-5-one derivatives with their antioxidant activities Int. J. Mol. Sci 9 12-32.