
ISSN 2320-5407                               International Journal of Advanced Research (2016), Volume 4, Issue 4, 939-946 
 

939 

 

                                                   Journal homepage: http://www.journalijar.com                 INTERNATIONAL JOURNAL 

                                            Journal DOI: 10.21474/IJAR01                           OF ADVANCED RESEARCH 

                                                                                                                               

RESEARCH ARTICLE 

 

Effect of Suspended Particles and Magnetic Field on Thermal Convection in Ferromagnetic Fluid with 

Varying Gravitational Field in Porous Medium. 

 

Sumit Pant
1
, Naveen Bhagat

1
 and Hema Kharayat

2
. 

1. Department of Mathematics, M. B. Govt. P. G. College, Haldwani (Nainital), 263139, India. 

2. Department of Physics, M. B. Govt. P. G. College, Haldwani (Nainital), 263139, India. 

 

Manuscript Info                  Abstract  

 
Manuscript History: 
 

Received: 17 February 2016 

Final Accepted: 19 March 2016 

Published Online: April 2016                                          

 
Key words:  
Ferromagnetic fluid, Magnetic 

Field, Suspended particles, Thermal 

convection. 

 

*Corresponding Author 

 

Sumit Pant. 

 

 

 

 

 

 

The aim of this paper is to study the effect of magnetic field and suspended 
particles on thermal convection in ferromagnetic fluid with varying gravity 

field saturating in a porous medium. A linear stability analysis and normal 

mode analysis methods are used to find the exact solution for a ferromagnetic 

fluid layer contained between two free boundaries. A dispersion relation 

governing the effect of magnetic field, suspended particles and medium 

permeability is derived theoretically. From the analysis, we have found that 

in case of stationary convection, the magnetic field has stabilizing effect on 

the system for λ > 0 and has a destabilizing effect for λ < 0. For stationary 

convection, it is also found that suspended particles and medium 

permeability have destabilizing effect on the system under the condition 

λ > 0 whereas for λ < 0, the nature of their effect reverses i.e. both 

parameters stabilizes the system for λ < 0. Further, the case of oscillatory 

mode is also considered. It is found that the principle of exchange of 

stabilities is valid for the problem under certain condition. The effect of all 

studied parameters on ferromagnetic fluid is also verified numerically. 

 
                   Copy Right, IJAR, 2016,. All rights reserved.

 

Introduction:- 
Ferromagnetic fluid (also called ferrofluid or magnetic fluid) is electrically non-conducting colloidal suspensions of 

solid ferromagnetic particles in a non-electrically conducting carrier fluid like water, kerosene, hydrocarbon or 

organic solvent etc. These colloidal particles are coated with a stabilizing dispersing agent (surfactants) who 
prevents particle agglomeration even when a strong magnetic field gradient is applied to the ferromagnetic fluid. 

These suspensions are stable and maintain their properties at extreme temperatures and over a long period of time. A 

detailed account on the stability of ferromagnetic fluid has been given by Rosenweig (1985) in his monograph. This 

monograph reviews several applications of heat transfer through ferromagnetic fluid. Ferromagnetic fluids have very 

large potential applications in electronic devices, mechanical engineering, material science, analytical 

instrumentation, medicines, optics, arts etc. Owing the applications of the ferromagnetic fluid, its study is important 

to researchers. Ferrofluid technology is well established and capable of solving a wide variety of technical problems. 

There are many successful applications of this engineering material and there is an immense scope of further 

research. There are various stability problems on ferromagnetic fluids. Many investigators (Siddheswar, 1993, 95, 

2003; Aniss, et al., 1993, 2001 and Sunil, et al., 2004) have been considered the Bénard convection in ferromagnetic 

fluids. In all the above studies, the ferromagnetic fluid has been considered to be clean. In many situations the fluid 
is not pure but contains suspended particles. In 1962, Saffman considered the stability of laminar flow of a dusty 

gas. The effect of suspended particles on the onset of Bénard convection has been considered by Scanlon and Segel 

(1973), where as Sharma, et al., (1976) have studied the effect of suspended particles on the onset of Bénard 

convection in hydromagnetics. They found that the critical Rayleigh number is reduced because of the capacity of 

the particles. 

http://www.journalijar.com/
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The effect of dust particles on ferrofluids heated and soluted from below is investigated by Sunil el al., 2006. 

Aggarwal et al. (2012) studied the effect of suspended particles, magnetic field and rotation on the thermal stability 

of ferromagnetic fluid and found that suspended particles have destabilizing effect whereas the magnetic field and 

magnetization have stabilizing effect on the system under certain conditions. Effects of magnetic field and 

suspended particles on ferrofluid have been studied by many authors (Scanlon and Segel, 1973; Sharma et al., 1976; 

Sunil et al., 2004; Sunil et al., 2005; Aggarwal and Prakash, 2009) but they all have assumed the constant gravity 
field. However, the earth’s gravity varies with height from its surface. But usually we neglect this variation of 

gravity for laboratory purposes and treat the field as a constant. This may not be the case for large scale flows in the 

ocean or the atmosphere. Considering the gravity as a quantity varying with distance from the centre can become 

imperative. Pradhan and Samal (1987) have studied the thermal stability of a fluid layer under gravitational field. 

The instability of streaming the Rivlin-Ericksen fluid in porous medium in hydromagnetics and the thermosolutal 

instability of the Rivlin-Ericksen fluid in the presence of magnetic field and variable gravity field in porous medium 

is studied by Sharma and Rana in 1999 and 2003. The stability of Rivlin-Ericksen elastic-viscous rotating fluid 

permited with suspended particles under variable gravity field in porous medium is studied by Rana and Kumar 

(2010).  

 

In this article, we have studied the effect of suspended particles and magnetic field on thermal convection in 

ferromagnetic fluid with a varying gravity field saturated in a porous medium. 

 

Mathematical Formulation of the Problem:- 
Here we consider an infinite horizontal layer of ferromagnetic fluid of thickness ‘d’ bounded by the planes z = 0 and 

z = d in porous medium. The system is acted upon by a uniform magnetic field 𝐇     0,0, H  and variable gravity field 

𝐠    0,0, −g , where g = λg0, g0 is the value of g at z = 0 which is always positive and λ can be positive or negative 

as gravity increases or decreases upwards from its value g0. The fluid layer is heated from below so that a uniform 

temperature gradient β =  
dT

dz
  is maintained across the layer (see Figure 1). The fluid layer is assumed to be flowing 

through an isotropic and homogeneous porous medium of porosity ε which is defined as the fraction of the total 

volume of the medium that is occupied by void space. Thus, the fraction 1 − ε is occupied by solid.  

 

 

 
 

 

 

                        

 

 

 

 

 

 

 
 

 

 

 

Fig 1: Geometrical Configuration 

The mathematical equations governing the motion of ferromagnetic fluid under the Boussinesq approximation, 

saturating a porous medium for the above model are as follows: 

The equation of continuity, conservation of momentum, temperature and equation of state of incompressible 

ferromagnetic fluid through porous medium are 

∇. 𝐪   = 0                              (1) 

1

ε
 
∂𝐪   

∂t
+

1

ε
 𝐪   . ∇ 𝐪    =  −

1

ρ
0

∇p +
ρ𝐠  

ρ
0

−
1

k1

ν𝐪   +
M∇𝐇   

ρ
0

+
μ

e

4πρ
0

 ∇ × 𝐇    × 𝐇   +
KN

ρ
0
ε
 𝐪𝐝     − 𝐪     

                 (2) 
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E
∂T

∂t
+  𝐪   . ∇ T +

mN cpt

ρ0c i
 ε

∂

∂t
+ 𝐪𝐝     ∙ ∇ T = κ∇2T                         (3) 

ρ = ρ
0
 1 − α T − T0                              (4) 

Equation of motion and continuity of dust particles are given by 

mN  
∂𝐪𝐝      

∂t
+

1

ε
 𝐪𝐝     ∙ ∇ 𝐪𝐝      = KN 𝐪   − 𝐪𝐝                                (5) 

ε
∂N

∂t
+ ∇ ∙  N𝐪𝐝      = 0                            (6) 

Equation of magnetic field is given by 

ε
∂𝐇   

∂t
= ∇ ×  𝐪   × 𝐇    + εη∇2𝐇                               (7) 

Where,  𝐪    u, v, w = filter velocity of pure fluid, 𝐪𝐝      l, r, s = velocity of suspended particles,      p = the fluid 

pressure, ρ = fluid density, N x , t = number density of suspended particles,    x =  x, y, z , ρ
0

= reference density, 

T0 = reference temperature, K = 6πρνη where η is the particle radius, is the stoke’s drag coefficient, T =
 temperature, g = gravitational acceleration, α = thermal coefficient of expansion, ε = medium porosity, μ

e
= 

magnetic permeability, ν = kinematic viscosity of fluid, k1 = medium permeability, κ =
χT

ρ0 c i
= thermal diffusivity, 

E = ε +  1 − ε 
ρs

ρ0

cs

c i
, ρ

s
, cs = density and specific heat of solid (porous matrix) material, ρ

0
, ci = density and 

specific heat of fluid, cpt = specific heat of dust particles, χ
T

= thermal conductivity, mN= mass of the particles per 

unit volume. 

Assuming the fluid is electrically non-conducting and that the displacement current is negligible, Maxwell’s 

equations becomes 

∇. 𝐁   = 0                and                 ∇ × 𝐇   = O                            (8) 
In Chu formulation of electrohydrodynamics, the relation between the magnetic field, magnetization and magnetic 

induction is 

𝐁   = μ
0
 𝐇   + 𝐌                                    (9) 

Here, 𝐌     stands for magnetization, 𝐇    stands for the magnetic field intensity and 𝐁    for magnetic induction. 
Assuming magnetization is aligned with the magnetic field, but allow a dependence on the magnitude of the 

magnetic field and temperature, so that 

𝐌    =
𝐇   

H
M 𝐇    , 𝐓                                                 (10) 

Where, 𝐇   =  0,0, H , i.e. 𝐇   = H𝐞z ,   𝐞z   is the unit vector along z-axis and H is the uniform magnetic field of the 
fluid layer and 

H =  𝐇    , M =  𝐌      and        B =  𝐁     
Generally, for completing a system, it is necessary that the equation of state will specify M in two thermodynamics 

variables (say H and T), but in present study, we consider that the magnetization is independent of the magnetic field 

intensity i.e. M = M T . Thus, as a first approximation, we assume that 

M = M0 1 − γ T − T0                                                 (11) 

Where M0 is the magnetization at T = T0 and γ =
1

M0
 

∂M

∂T
 

H
 

The basic state is assumed to be quiescent state and is given by  

𝐪   = 𝐪   b =  0,0,0 , 𝐪𝐝     =  𝐪𝐝      b =  0,0,0 , p = pb z , 

 𝐇   = 𝐇   b z , 𝐁   = 𝐁   b (𝑧), N = Nb = N0(Constant), T = Tb (z) = −βz + T0 

ρ = ρ
b

= ρ
0

(1 + αβz), M = M0(1 + γβz)                                        (12) 

  

The Perturbations Equations 

Let 𝐪   ′ u, v, w , 𝐪𝐝
′      , p′ , ρ′, M′, θ N′and 𝐇   ′ H′

x  , H′
y  , H′

z  denote respectively the small perturbations in fluid velocity, 

dust particles velocity, pressure, density, magnetization, temperature, number density of suspended particles and 

magnetic field. So that 

𝐪   = 𝐪   b + 𝐪   ′, 𝐪𝐝     =  𝐪𝐝      b + 𝐪𝐝
′      ,p = pb + p′, M = Mb + M′, 𝐇   = 𝐇   b + 𝐇   ′ , T = Tb + θ, N = Nb + N′ , ρ = ρ

b
+ ρ′ 

Applying these perturbations and linearising equations (1) – (11), we get 

∇. 𝐪   ′ = 0                             (13) 
1

ε

∂𝐪   ′

∂t
= −

1

ρ0

∇p′ −
λg0ρ′

ρ0

𝐞z −
KN0

ρ0ε
 𝐪   ′ − 𝐪𝐝     

′
 −

1

k1
ν𝐪   ′ +

M ′∇𝐇   

ρ0

+
μe

4πρ0

 ∇ × 𝐇   ′ × 𝐇                                                      (14) 
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 E + hε 
∂θ

∂t
= β w + hs + κ∇2θ                                      (15) 

where  h =
mN0cpt

ρ0 c i
 

 
m

K

∂

∂t
+ 1 𝐪𝐝

′      = 𝐪   ′ ⇒ 𝐪𝐝
′      =

𝐪   ′

L0
 , where L0 =  

m

K

∂

∂t
+ 1                                    (16) 

ε
∂N ′

∂t
+ N0  ∇ ∙ 𝐪𝐝

′       = 0                                       (17) 

ε
∂𝐇   ′

∂t
= ∇ ×  𝐪   ′ × 𝐇    + εη∇2𝐇   ′                                      (18) 

ρ′ = −ρ
0
αθ                           (19) 

M′ = −M0γθ                           (20) 

Now, eliminating 𝐪𝐝
′       in equation (14) and (15) with the help of equation (16), we get  

L0

ε

∂𝐪   ′

∂t
= L0  −

1

ρ0

∇p′ + λg0αθ𝐞z −
m N0

ρ0εL0

∂𝐪   ′

∂t
−

1

k1
ν𝐪   ′ −  

M0γ∇H

ρ0

 θ𝐞z +
μe H

4πρ0

 ∇ × 𝐇   ′ × 𝐞z                       (21) 

L0  (E + hε)
∂

∂t
− κ∇2 θ = β h + L0 w                                       (22) 

Writing the scalar components of equation (21) and eliminating ∇p′, u, v, H′
x  , H′

y  between them by using equation 

(13), we get 

 
1

ε
 1 +

M

τ
∂
∂t + 1

 
∂

∂t
+

ν

k1

 ∇2w =  
∂2

∂x2
+

∂2

∂y2
  λg0α −

M0γ∇H

ρ
0

 θ +
μ

e
H

4πρ
0

∇2
∂

∂z
H′

z 

                               (23) 

Taking the z- component of equation (18), we get    

 
∂

∂t
−  η∇2 H′

z =
H

ε

∂w

∂z
                                           (24) 

From equation (15), we obtain 

  E + hε 
∂

∂t
− κ∇2 θ = β  1 +

h

τ
∂

∂t
+1

 w                                         (25) 

Where M =  
mN0

ρ0

 and τ =
m

K
 

 

Normal Mode Analysis 
Now we analyze the perturbations into normal modes by assuming the following forms of perturbation quantities 

 w, θ, H′
z =  W z , ʘ z , Z z  e ikx x+iky y+nt                                        (26) 

Where kx and ky  are wave numbers along x and y directions respectively, a =  kx
2 + ky

2
 is the resultant wave 

number of the disturbance and n is the growth rate (Complex constant). For functions with this dependence on x, y 

and t, 
∂2

∂x2 +
∂2

∂y2 = −a2, ∇2=
∂2

∂z2 − a2 

Using equation (26), equations (23) – (25) in non-dimensional form becomes 

 
σ

ε
 1 +

M

1+τ1σ
 +

1

Pl
  D2 − a2 W =

−αa2d2

ν
 λg0 −

M0γ∇H

ρ0α
  ʘ +

μe Hd

4πρ0ν
D D2 − a2 Z                                                (27) 

 D2 − a2 − σp2 Z = −
Hd

εη
DW                                         (28) 

 D2 − a2 − E1σp1 ʘ = −
βd2

κ
 

H1+τ1σ

1+τ1σ
 W                                         (29) 

Where H1 = 1 + h and we expressed in non-dimensional form by using the following  non-dimensional parameters 

a =
a∗

d
, σ =

nd2

ν
 , D∗ = dD , p1 =

ν

κ
 is the prandtl number, p2 =

ν

η
 is the magnetic prandtl number , Pl =

k1

d2 , E1 = E +

hε , τ1 =
τν

d2  (dropping ∗ for convenience) 

 

 

 

Exact Solution for Free Boundaries 
Here, we have considered that both the boundaries are free and perfect conductor of heat. The boundary conditions 

for the problem are (Chandrasekhar, 1981) 

W = D2W = 0 , ʘ = DZ = 0 when Z = 0 and 1                                        (30) 
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Eliminating ʘ and Z from (27), (28) and (29), we get- 

a2λRf

 D2 − a2 − E1σp1 
 

H1 + τ1σ

1 + τ1σ
 W =  

σ

ε
 1 +

M

1 + τ1σ
 +

1

Pl

  D2 − a2 W +
Q

ε

D2 D2 − a2 

 D2 − a2 − σp2 
W 

                                             (31) 

Where Rf =  g0 −
M0γ∇H

λρ0α
 

αβd4

νκ
 is the Rayleigh number for ferromagnetic fluids with varying gravity field. If λ = 1, 

then this reduces to general Rayleigh number (Aggarwal and Makhija, 2012). Q =
μe H2d2

4πρ0ν η
  is the Chandrasekhar 

number. 

If λ > 0, g0 >
M0γ∇H

λρ0 α
 , then Rf < 𝑅, this implies that the convection starts in the ferrofluid at a higher thermal 

Rayleigh number.  

If  λ < 0 , then Rf > 𝑅, which implies that the convection starts in the ferrofluid at a lower thermal Rayleigh 

number. 

Hence the proper solution for W characterizing the lowest mode is 

                                                        W = W0 sin πz                                       (32) 

Where,  W0 is a constant. Substituting the proper solution (32) in equation (31), we get 

xλR1 =  
iσ1

ε
 1 +

M

1+iτ1σ1π2
 +

1

P
  

1+iτ1σ1π2

H1+iτ1σ1π2
  1 + x + iE1σ1p1  1 + x +

Q1

ε
 

1+iτ1σ1π2

H1+iτ1σ1π2
 

 1+x+iE1σ1p1 

 1+x+iσ1p2 
 1 + x     

                                                      (33) 

Where R1 =
Rf

π4 , Q1 =
Q

π2 , x =
a2

π2 , iσ1 =
σ

π2 , P = π2Pl 

Equation (33) is the required dispersion relation including the effect of magnetic field, medium permeability, dust 

particles, kinematic viscosity and variable gravity field on the thermal convection of ferromagnetic fluid in porous 

medium. This relation agrees with the dispersion relation derived by Makhija (2012) for Rivlin-Ericksen fluid, if 

rotation and solute concentration is removed from his study. 

 

The Case of Stationary Convection 
For the case of stationary convection, the marginal state will be characterized by σ1 = 0, therefore the dispersion 

relation (33) reduces to 

       R1 =
 1+x 

xλH1
 

1+x

P
+

Q1

ε
                                                                                                  (34) 

The above equation expresses the modified Rayleigh number R1 as a function of modified magnetic field 

parameter Q1, suspended particles parameter H1, medium permeability parameter P and dimensionless wave number 

x. 

To study the effect of magnetic field, suspended particles and medium permeability, we examine the nature of  
dR1

dQ1
 , 

dR1

dH1
 and 

dR1

dP
 analytically. 

     
dR1

dQ1
=

 1+x 

xλH1ε
                                                                                              (35) 

This equations shows that magnetic field Q1 has stabilizing effect when λ > 0 while it has destabilizing effect when 

λ < 0. 

   
dR1

dH1
= −

 1+x 

xλH1
2  

1+x

P
+

Q1

ε
                                        (36) 

This is negative. This shows that the effect of suspended particles is to destabilize the system when λ > 0 and to 

stabilize the system when λ < 0. 

   
dR1

dP
= −

 1+x 2

xλH1P2                                        (37) 

This shows that the medium permeability has a destabilizing effect for λ > 0 and stabilizing effect on the system for 

λ < 0. 

The dispersion relation (34) is analyzed numerically also. In Figure 2, R1 is plotted against modified magnetic field 

parameter Q1 for  H1 = 10, P = 0.13, ε = 0.15, λ = 2, x = 2, 4, 6 and in Figure 3, R1 is plotted against wave 

number x for H1 = 10, P = 0.2, ε = 0.15, λ = 2, Q1 = 20, 40, 60. Both the figures shows the stabilizing effect of 

magnetic field (for λ > 0 ) as Rayleigh number increases with the increase in magnetic field parameter. In figure 4, 

R1 is plotted against modified suspended particle parameter H1 for Q1 = 30,  P = 0.13, ε = 0.15, λ = 2, x =
1, 8, 15 and in figure 5, R1 is plotted against wave number x for Q1 = 30,  P = 0.2, ε = 0.15, λ = 2, H1 =
10, 30, 50. Both the figures shows the destabilizing effect of suspended particles as the Rayleigh number decreases 



ISSN 2320-5407                               International Journal of Advanced Research (2016), Volume 4, Issue 4, 939-946 
 

944 

 

with the increase in suspended particles parameter H1 for the case λ > 0. Figure 6 shows the variation of R1 with 

medium permeability parameter P for H1 = 10, Q1 = 30, ε = 0.15, λ = 2, x = 1, 8, 15 and Figure 7 shows the 

variation of R1 with wave number for H1 = 10, Q1 = 30, ε = 0.15, λ = 2, P = 0.01, 0.05, 0.09. In both the figures, 

Rayleigh number decreases with the increase in medium permeability parameter P which confirms the destabilizing 

effect of medium permeability on the system for the case λ > 0. 

 

 

 

 

 

         

 

 

 

 

 

 

 

 

 

 

               Fig 2: Variation of R1 with Q1                                             Fig 3: Variation of R1 with x 

 

 

 

 

        

 

 

 

 

 

 

 

 

 

 

             Fig 4: Variation of R1 with H1                                               Fig 5: Variation of R1 with x 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                   Fig 6: Variation of R1 with P                                           Fig 7: Variation of R1 with x 
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The Case of Oscillatory Mode 

Multiplying equation (27) by W∗ (complex conjugate of W) and integrating over the range of z, we get 

 
σ

ε
 1 +

M

1 + τ1σ
 +

1

Pl

  W∗ D2 − a2 W dz
1

0

+
αa2d2

ν
 λg0 −

M0γ∇H

ρ
0
α

  W∗ʘ dz
1

0

−
μ

e
Hd

4πρ
0
ν
 W∗

1

0

 D2 − a2 DZ dz

= 0 
                                 (38) 

Integrating equation (38), using boundary conditions together with (28) and (29), we get  

 
σ

ε
 1 +

M

1 + τ1σ
 +

1

Pl

 I1 −
αa2κ

νβ
 λg0 −

M0γ∇H

ρ
0
α

  
1 + τ1σ∗

H1 + τ1σ∗
  I2 + E1σ∗p1I3 +

μ
e
εη

4πρ
0
ν
 I4 + σ∗p2I5 = 0 

                                 (39) 

Where  I1 =    DW 2 + a2 W 2 
1

0
dz ,  I2 =    Dʘ 2 + a2 ʘ 2 

1

0
dz ,  I3 =   ʘ 21

0
dz 

I4 =    D2Z 2 + 2a2 DZ 2 + a4 Z 2 
1

0
dz ,   I5 =    DZ 2 + a2 Z 2 

1

0
dz                                      (40) 

and σ∗ is the complex conjugate of σ. The integrals I1 to I5 all are positive definite. Putting σ = iσi σ∗ = −iσi  in 
equation (39) and equating imaginary parts, we get 

σi

 
 
 
 
 

1

ε
 1 +

M

1 + τ1
2σi

2
 I1 +

αa2κ

νβ
 λg

0
−

M0γ∇H

ρ
0
α

  
H1 − 1

H1
2 + τ1

2σi
2
 τ1I2

          

          +
αa2κ

νβ
 λg

0
−

M0γ∇H

ρ
0
α

  
H1 + τ1

2σi
2

H1
2 + τ1

2σi
2
 E1σip1

I3 +
μ

e
εη

4πρ
0
ν

p
2
I5

 
 
 
 
 

= 0 

                                (41) 

If  λg
0

>
M0γ∇H

ρ0α
 , then the terms in the bracket are positive definite which implies that   σi = 0. Therefore, oscillatory 

modes are not allowed and the principle of exchange of stabilities is satisfied if   λ >
M0γ∇H

ρ0αg0

 . 

 

Conclusions:- 
In this article, we have studied the effect of magnetic field, suspended particles, permeability and variable gravity 

field on thermal convection of ferromagnetic fluid saturating a porous medium. The conclusions from the analysis 

are as follows: 

1) For stationary convection, magnetic field has stabilizing effect if λ > 0, while it has destabilizing effect 

when λ < 0. 

2) Suspended particles has destabilizing effect if  λ > 0, while it has stabilizing effect when λ < 0. 

3) When gravity increases upward (i.e λ > 0), the medium permeability has a destabilizing effect whereas it 

has stabilizing effect for λ < 0. 

4) The principle of exchange of stabilities is valid under certain conditions. 
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